

Notice	and	Disclaimer

The	recommendations,	best	practice	guides,	tuning	examples	(together	"Best	Practices")	as	well	as	sample
code,	scripts	(together	"Sample	Code",	collectively	with	the	Best	Practices	is	"Content")	contained	herein	are
the	property	of	Couchbase,	Inc.	("Couchbase")	and	are	provided	for	illustrative	and	instructional	purposes
only.	The	user	of	the	Content	acknowledges	and	accepts	that	the	Content	is	not	supported	by	any	license
agreement	between	Couchbase	and	the	user.

The	Content	may	not	be	reproduced,	disseminated,	sold,	sub-licensed,	assigned,	rented	leased,	distributed
or	otherwise	published,	in	whole	or	in	part	without	prior	written	permission	from	Couchbase.

The	user	of	the	Source	Code	assumes	the	entire	risk	of	any	use	it	may	make	or	permit	to	be	made	of	the
Source	Code	and	is	solely	responsible	for	adequate	protection	and	backup	of	its	data.	Couchbase	reserves
the	right	to	make	changes	to	the	Source	Code	or	Best	Practices	at	any	time	without	prior	notice.	ALWAYS
thoroughly	evaluate	Sample	Code	using	test	data	to	ensure	proper	operation	and	confirm	the	Sample	Code
causes	no	adverse	effects	prior	to	use	on	live	or	production	data.

Couchbase	hereby	reserves	all	rights	in	the	Content	under	the	copyright	laws	of	the	United	States	and
applicable	international	laws,	treaties,	and	conventions.

THE	CONTENT	HEREIN	IS	PROVIDED	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,
INCLUDING	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR
PURPOSE	ARE	DISCLAIMED.	WITHOUT	LIMITING	ANY	OF	THE	FOREGOING	AND	TO	THE	MAXIMUM
EXTENT	PERMITTED	BY	APPLICABLE	LAW,	IN	NO	EVENT	SHALL	Couchbase	OR	ITS	CONTRIBUTORS
BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR
SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	SUSTAINED	BY	YOU
OR	A	THIRD	PARTY,	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THE	CONTENT,
EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.	The	foregoing	shall	not	exclude	or	limit	any
liability	that	may	not	by	applicable	law	be	excluded	or	limited.

Use	of	or	access	to	Couchbase	products	or	services	requires	a	separate	license	from	Couchbase.

Notice	and	Disclaimer

3Couchbase	Professional	Services

N1QL	Tuning	Guide

This	document	discusses	goals	for	index	and	query	tuning,	as	well	as	how	to	identify	slowly	performing	and
high	resource	consuming	N1QL	statements.	We	explain	how	to	review	and	interpret	an	explain	plan	and
provide	tuning	suggestions.

Sections
Understanding	Query	Workflow	and	Optimization
Understanding	Index	Scans
Identifying	the	Top	Slow	Queries
Understanding	an	Explain	Plan
Understanding	Cardinality	and	Selectivity
Understanding	Covering	Indexes	and	TTLs
Tuning	Tips	and	Advice
Appendix:	Operators
Resources

The	performance	of	any	system	follows	physics.	The	basic	two	rules	can	be	(loosely)	stated	as:

1.	 Quantity:	Less	work	is	more	performance.
2.	 Quality:	Faster	work	is	more	performance.

Query	processing	is	no	different	and	it	also	tries	to	optimize	both	these	factors	in	various	forms	and
scenarios	to	bring	efficiency.	Each	optimization	is	different	and	results	in	a	different	amount	of	performance
benefit.

Tuning	is	iterative	and	involves	the	following	basic	steps:

1.	 Identifying	the	slowly	performing	or	high	resource	consumption	N1QL	statements	that	are	responsible
for	a	large	share	of	the	application	workload	and	system	resources.	Generally	tuning	the	slower	and
most	frequently	used	N1QL	queries	will	yield	the	highest	results.	Additionally,	depending	on	your
response	and	SLA	needs	you	will	need	to	identify	and	tune	specific	queries.	As	in	many	scenarios
generally,	the	Pareto	principle	applies	to	query	tuning	as	well	-	80%	of	your	workload/performance
problems	are	probably	caused	by	20%	of	your	queries	-	focus	and	tune	that	20%	of	your	queries

2.	 Verify	that	the	execution	plans	produced	by	the	query	optimizer	for	these	statements	are	reasonable	and
expected.	Note:	Couchbase	currently	is	a	RULE	based	optimizer	and	not	a	COST	based	optimizer	so
key	or	index	cardinality	do	not	impact	the	choice	of	the	index	or	creation	of	the	overall	query	plan

3.	 Implement	corrective	actions	to	generate	better	execution	plans	for	poorly	performing	SQL	statements

The	previous	steps	are	repeated	until	the	query	performance	reaches	a	satisfactory	level	or	no	more
statements	can	be	tuned.

N1QL	Tuning	Guide

4Couchbase	Professional	Services

https://en.wikipedia.org/wiki/Pareto_principle

Understanding	Query	Workflow	and	Optimization
Applications	and	their	drivers	submit	the	N1QL	query	to	one	of	the	available	query	nodes.	The	Query	node
parses	and	analyzes	the	query,	uses	metadata	on	underlying	objects	to	figure	out	the	optimal	execution	plan,
which	it	then	executes.	During	execution,	depending	on	the	query,	using	applicable	indices,	the	query	node
works	with	index	and	data	nodes	to	retrieve	and	perform	the	select-join-project	operations.	Since	Couchbase
is	a	clustered	database,	you	scale	out	data,	index	and	query	nodes	to	fit	your	performance	and	availability
goals.

The	figure	below	shows	all	the	possible	phases	a	query	goes	through	during	execution	to	return	the	results.
Not	all	queries	need	to	go	through	every	phase.	Some	go	through	many	of	these	phases	multiple	times.	The
Optimizer	decides	phases	each	query	should	execute.	For	example,	the	Sort	phase	will	be	skipped	when
there	is	no		ORDER	BY		clause	in	the	query;	the	scan-fetch-join	phase	executes	multiple	times	to	perform
multiple	joins.	Some	operations	like	query	parsing	and	planning	is	done	serially,	while	other	operations	like
fetch,	join,	sort	can	be	done	in	parallel.

N1QL	Tuning	Guide

5Couchbase	Professional	Services

The	N1QL	Optimizer	analyzes	the	query	and	available	access	path	options	for	each	keyspace	(bucket)	in	the
query.	For	each	query	block,	the	planner	needs	to	first	select	the	access	path	for	each	bucket,	determine	the
both	join	order	and	type.

Access	Path	Selection

1.	 KeyScan	access:	When	specific	document	IDs	(keys)	are	available,	the	Keyscan	access	method
retrieves	those	documents.	Any	filters	on	that	keyspace	are	applied	to	those	documents.	The	Keyscan
can	be	used	when	a	keyspace	is	queried	by	specifying	the	document	keys	(USE	KEYS	modifier)	or
during	join	processing.	The	Keyscan	is	commonly	used	to	retrieve	qualifying	documents	for	the	inner
keyspace	during	join	processing.

2.	 Index	Count	Scan:	Queries	with	a	single	projection	of	a		COUNT()		aggregate	and	do	not	contain	any
	JOIN		statements.	The	chosen	index	needs	to	be	covered	with	a	single	range	or	equality	predicates
that	can	be	to	push	down	to	the	indexer.	The	argument	passed	to		COUNT()		needs	to	be	constant	or
leading	key.

3.	 Covering	Secondary	Scan	Each	satisfied	index	with	the	most	number	of	index	keys	is	examined	for
query	coverage.	Shortest	covering	index	will	be	used.

4.	 Regular	Secondary	Scan	access:	A	qualifying	secondary	index	scan	is	used	to	first	filter	the	keyspace
and	to	determine	the	qualifying	documents	IDs.	It	then	retrieves	the	qualified	documents	from	the	data
store,	if	necessary.	If	the	selected	index	has	all	the	data	to	answer	the	query,	N1QL	avoids	fetching	the
document	altogether	—	this	method	is	called	the	covering	index	scan.	This	is	highly	performant.	Your
secondary	indexes	should	help	queries	choose	cover	index	scans	as	much	as	possible.	Indexes	with	the
most	number	of	matching	index	keys	are	used.	When	more	than	one	index	is	qualified,	an	IntersectScan
is	used.

5.	 UNNEST	Scan:	Only	array	indexes	are	considered.	And	only	queries	with	UNNEST	clauses	are
considered.

6.	 PrimaryScan	access:	This	method	is	chosen	when	documents	IDs	are	not	given	and	no	qualifying
secondary	indexes	are	available	for	this	keyspace.	This	access	method	is	quite	expensive	and	should
be	avoided	especially	in	a	production	environment.

Index	Selection

Before	discussing	how	the	N1QL	Query	Planner	performs	index	selection,	it	is	important	to	define	the
contract	between	N1QL	Index	Selection	and	the	user.	The	contract	does	not	change	from	release	to	release:

The	index	chosen	by	N1QL	will	satisfy	the	query.	That	is	N1QL	will	not	choose	an	index	whose	definition
can	lead	to	wrong	results.	(Bugs	outside	of	index	definition	and	selection	do	not	count)
If	there	are	one	or	more	indexes	that	satisfy	the	query	and	are	online,	N1QL	will	choose	at	least	one
such	index.	That	is,	if	an	index	scan	can	be	performed,	N1QL	will	not	perform	a	full/primary	scan.
N1QL	does	not	promise	to	choose	the	"best"	index	or	combination	of	indexes	to	satisfy	the	query.	This	is
an	optimization	problem,	and	no	database	offers	such	a	guarantee	(excluding	marketing	claims)

Prior	to	proceeding	with	secondary	scans,	the	N1QL	planner	will	resolve	qualified	indexes	on	the	keyspace
based	on	the	query	predicates.	The	following	algorithm	is	used	to	select	the	indexes	for	a	given	query:

Online	indexes:	Only	online	indexes	are	considered.	That	means	when	an	index	is	being	built
(pending),	or	is	only	defined	but	not	built,	it	is	disqualified	and	isn't	chosen.
Preferred	indexes:	If	a	query	has	a		USE	INDEX		clause,	only	those	indexes	are	evaluated.	If	the
preferred	indexes	are	not	qualified,	other	online	indexes	are	considered.
Satisfying	index	filters:	For	partial/filtered	indexes,	the	N1QL	Query	Planner	considers	only	those

N1QL	Tuning	Guide

6Couchbase	Professional	Services

indexes	whose	filter	(WHERE)	is	broad	enough	to	satisfy	the	query.	The	filter	does	not	need	to	match
the	query	predicate	exactly;	the	filter	just	needs	to	be	a	superset	of	the	query	predicate.
Satisfying	index	keys:	Indexes	whose	leading	keys	satisfy	query	predicate	are	selected.	This	is	the
common	way	to	select	indexes	with	B-TREE	indexes.
Longest	satisfying	keys:	Finally,	among	the	indexes	with	satisfying	keys,	some	redundancy	is
eliminated	by	keeping	the	longest	satisfying	index	keys	in	the	index	key	order.	For	example:	An	index
with	satisfying	keys	(a,	b,	c)	is	retained	instead	of	an	index	with	satisfying	keys	(a,	b).	Note	that
satisfying	keys	refers	only	to	those	keys	at	the	beginning	of	the	index	that	is	used	in	the	query	predicate.
An	index	can	have	additional	keys	after	its	satisfying	keys.

Once	the	index	selection	is	done	the	following	scan	methods	are	considered	in	the	order.

1.	 IndexCountScan:	Queries	with	a	single	projection	of	COUNT	aggregate,	NO	JOINs,	or	GROUP	BY	are
considered.	The	chosen	index	needs	to	be	covered	with	a	single	exact	range	for	the	given	predicate,
and	the	argument	to	COUNT	needs	to	be	constant	or	leading	key.

2.	 Covering	secondary	scan:	Each	satisfied	index	with	the	most	number	of	index	keys	is	examined	for
query	coverage,	and	the	shortest	covering	index	will	be	used.	For	an	index	to	cover	the	query,	we
should	be	able	to	run	the	complete	query	just	using	the	data	in	the	index.	In	other	words,	the	index
needs	to	have	both	keys	in	the	predicate	as	well	as	the	keys	referenced	in	other	clauses,	e.g.,
projection,	subquery,	order	by,	etc.

3.	 Regular	secondary	scan:	Indexes	with	the	most	number	of	matching	index	keys	are	used.	When	more
than	one	index	is	qualified,	IntersectScan	is	used.	To	avoid	IntersectScan,	provide	a	hint	with	`USE
INDEX``.

4.	 UNNEST	Scan:	Only	array	indexes	with	an	index	key	matching	the	predicates	are	used	for	UNNEST
scan.

5.	 Regular	primary	scan:	If	a	primary	scan	is	selected,	and	no	primary	index	available,	the	query	errors
out.

Understanding	Index	Scans
FILTER,	JOIN,	and	PROJECT	are	fundamental	operations	of	database	query	processing.	The	filtering
process	takes	the	initial	keyspace	and	produces	an	optimal	subset	of	the	documents	the	query	is	interested
in.	To	produce	the	smallest	possible	subset,	indexes	are	used	to	apply	as	many	predicates	as	possible.

Query	predicate	indicates	the	subset	of	the	data	interested.	During	the	query	planning	phase,	we	select	the
indexes	to	be	used.	Then,	for	each	index,	we	decide	the	predicates	to	be	applied	by	each	index.	The	query
predicates	are	translated	into	spans	in	the	query	plan	and	passed	to	Indexer.	Spans	simply	express	the
predicates	in	terms	of	data	ranges.	Where	each	range	has	a	start	value,	an	end	value,	and	specifies	whether
to	include	the	start	or	the	end	value.

A	"High"	field	in	the	range	indicates	the	end	value.	If	"High"	is	missing,	then	there	is	no	upper	bound.
A	"Low"	field	in	the	range	indicates	the	start	value.	If	"Low"	is	missing,	the	scan	starts	with		MISSING	.
Inclusion	indicates	if	the	values	of	the	High	and	Low	fields	are	included.

Inclusion	# Meaning Description

0 NEITHER Neither	High	nor	Low	fields	are	included

1 LOW Only	Low	fields	are	included

N1QL	Tuning	Guide

7Couchbase	Professional	Services

2 HIGH Only	High	fields	are	included

3 BOTH Both	High	and	Low	fields	are	included

Example:	Equality	Predicate

SELECT	meta().id	FROM	`travel-sample`	WHERE	id	=	10

Span	Range	for Low High Inclusion

ID	=	10 10 10 3	(BOTH)

Example:	Inclusive	One-Sided	Range	Predicate

SELECT	meta().id	FROM	`travel-sample`	WHERE	id	>=	10

Span	Range	for Low High Inclusion

ID	>=	10 10 Unbounded 1	(LOW)

Example:	Exclusive	One-Sided	Range	Predicate

SELECT	meta().id	FROM	`travel-sample`	WHERE	id	>	10

Span	Range	for Low High Inclusion

ID	>	10 10 Unbounded 0	(NEITHER)

Example:	AND	Predicate

SELECT	meta().id	FROM	`travel-sample`	WHERE	id	>=10	AND	id	<	25

Span	Range	for Low High Inclusion

ID	>=	10	AND	ID	<	25 10 25 1	(LOW)

Example:	OR	Predicate

SELECT	meta().id	FROM	`travel-sample`	WHERE	id	=	10	OR	id	=	20

The	predicate	produces	two	independent	ranges	and	both	of	them	are	pushed	to	index	scan.	Duplicate
ranges	are	eliminated,	but	overlaps	are	not	eliminated.

Span	Range	for Low High Inclusion

ID	=	10 10 10 3	(BOTH)

ID	=	20 20 20 3	(BOTH)

N1QL	Tuning	Guide

8Couchbase	Professional	Services

When	you	analyze	the	explain	plan,	correlate	the	predicates	in	the	explain	to	the	spans.	Ensure	the	most
optimal	index	is	selected	and	the	spans	have	the	expected	range	for	all	the	index	keys.	More	keys	in	each
span	will	make	the	query	more	efficient.	Further	explanation	and	many	more	detailed	examples	of	index
scans	can	be	found	here:	https://docs.couchbase.com/server/5.5/performance/index-scans.html

Identifying	the	Top	Slow	Queries
The	top	slow	queries	can	be	identified	by	querying	the	system	catalog	using	the	following	select	statement
(available	on	version	Couchbase	4.5	and	above)

select	*	from	system:completed_requests

The		system:completed_requests		catalog	maintains	a	list	of	the	most	recent	(4000	by	default)
completed	requests	that	have	run	longer	than	a	predefined	threshold	of	time	(>=1000ms	by	default).	This
information	provides	a	general	insight	into	the	health	and	performance	of	the	query	engine	and	the	cluster.

You	can	configure	the		system:completed_requests		catalog	by	specifying	the	parameters	as
command-line	options	for	the	cbq-engine.

	completed-threshold	:	Sets	the	minimum	request	duration	after	which	requests	are	added	to	the
	system:completed_requests		catalog.	The	default	value	is	1000ms.	Specify	0	to	log	all	requests
and	-1	to	not	log	any	requests	to	the	catalog.

To	specify	a	different	value,	use:		cbq-engine	-completed-threshold=500	
	completed-limit	:	Sets	the	number	of	most	recent	requests	to	be	tracked	in	the
	system:completed_requests		catalog.	The	default	value	is	4000.	Specify	0	to	not	track	any
requests	and	-1	to	set	no	limit.

To	specify	a	different	value,	use:		cbq-engine	-completed-limit=1000	

You	can	also	set	these	parameters	through	the	Admin	API	settings	endpoint:

curl	-X	POST	\

		-u	Administrator:password	\

		-d	'{	"completed-threshold":	500,	"completed-limit":	2000	}'	\

		http://localhost:8093/admin/settings

system:completed_requests	properties

[{

		"clientContextID":	"MYAPP-23fce132-050b-4ca3-9369-745b579cfad4",

		"elapsedTime":	"1.149392493s",

		"errorCount":	0,

		"node":	"127.0.0.1:8091",

		"phaseCounts":	{

				"fetch":	35,

				"primaryScan":	35,

N1QL	Tuning	Guide

9Couchbase	Professional	Services

https://docs.couchbase.com/server/5.5/performance/index-scans.html
https://docs.couchbase.com/server/6.0/settings/query-settings.html

				"sort":	2

		},

		"phaseOperators":	{

				"authorize":	1,

				"fetch":	4,

				"primaryScan":	4,

				"sort":	1

		},

		"remoteAddr":	"127.0.0.1:37149",

		"requestId":	"1fd6b7e9-8021-4872-98a8-a07908107674",

		"requestTime":	"2019-02-08	00:41:12.722504817	+0000	UTC",

		"resultCount":	2,

		"resultSize":	381,

		"scanConsistency":	"unbounded",

		"serviceTime":	"1.149185373s",

		"state":	"completed",

		"statement":	"SELECT	type,	rendition,	score,	segment	FROM	`api`	WHERE	type

	=	'linearSegment'	AND	rendition	=	'master:c32ae827:162800'	ORDER	BY	score	D

ESC	LIMIT	1",

		"userAgent":	"Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10_14_2)",

		"users":	"Administrator"

}]

Property Description

clientContextID The	opaque	ID	or	context	provided	by	the	client.

elapsedTime
The	time	taken	from	when	the	request	was	acknowledged	by	the	service	to	when
the	request	was	completed.	It	includes	the	time	taken	by	the	service	to	schedule
the	request.

errorCount Total	number	of	errors	encountered	while	executing	the	query.

executionTime The	duration	of	the	query	from	when	it	started	executing	to	when	it	completed.

node IP	address	and	port	of	the	query	engine	node	in	the	Couchbase	Cluster.

phaseCounts Count	of	documents	processed	at	selective	phases	involved	in	the	query
execution,	such	as	authorize,	indexscan,	fetch,	parse,	plan,	run	etc.

phaseOperators

Indicates	the	number	of	each	kind	of	query	operators	involved	in	different	phases
of	the	query	processing.	For	instance,	this	example,	one	non	covering	index	path
was	taken,	which	involves	1	indxeScan	and	1	fetch	operators.	

A	join	would	have	probably	involved	2	fetches	(1	per	keyspace)	

A	union	select	would	have	twice	as	many	operator	counts	(1	per	each	branch	of
the	union).	

This	is	in	essence	the	count	of	all	the	operators	in	the		executionTimings	
field.

remoteAddr IP	address	and	port	number	of	the	client	application,	from	where	the	query	is
received.

N1QL	Tuning	Guide

10Couchbase	Professional	Services

requestId Unique	request	ID	internally	generated	for	the	query.

requestTime Timestamp	when	the	query	is	received.

resultCount Total	number	of	documents	returned	in	the	query	result.

resultSize Total	number	of	bytes	returned	in	the	query	result.

scanConsistency The	value	of	the	query	setting	Scan	Consistency	used	for	the	query.

serviceTime Total	amount	of	calendar	time	taken	to	complete	the	query.

state The	state	of	the	query	execution,	such	as	completed,	in	progress,	cancelled.

statement The	N1QL	query	statement	being	executed.

userAgent Name	of	the	client	application	or	program	that	issued	the	query.

users Username	with	whose	privileges	the	query	is	run.

The		system:completed_requests		catalog	can	be	queried	against	just	like	any	other	keyspace
(bucket)	in	Couchbase.

Longest	Running	Queries

First	target	and	tune	the	queries	that	take	the	most	amount	of	time.

SELECT	statement,

				DURATION_TO_STR(avgServiceTime)	AS	avgServiceTime,

				COUNT(1)	AS	queries

FROM	system:completed_requests

WHERE	UPPER(statement)	NOT	LIKE	'INFER	%'

				AND	UPPER(statement)	NOT	LIKE	'CREATE	INDEX%'

				AND	UPPER(statement)	NOT	LIKE	'%	SYSTEM:%'

GROUP	BY	statement

LETTING	avgServiceTime	=	AVG(STR_TO_DURATION(serviceTime))

ORDER	BY	avgServiceTime	DESC

Most	Frequent	Queries

Secondly,	target	the	queries	which	occur	most	frequently.

SELECT	statement,

				COUNT(1)	AS	queries

FROM	system:completed_requests

WHERE	UPPER(statement)	NOT	LIKE	'INFER	%'

				AND	UPPER(statement)	NOT	LIKE	'CREATE	INDEX%'

				AND	UPPER(statement)	NOT	LIKE	'%	SYSTEM:%'

GROUP	BY	statement

LETTING	queries	=	COUNT(1)

ORDER	BY	queries	DESC

Largest	Result	Size	Queries

N1QL	Tuning	Guide

11Couchbase	Professional	Services

SELECT	statement,

				(avgResultSize)	AS	avgResultSizeBytes,

				(avgResultSize	/	1000)	AS	avgResultSizeKB,

				(avgResultSize	/	1000	/	1000)	AS	avgResultSizeMB,

				COUNT(1)	AS	queries

FROM	system:completed_requests

WHERE	UPPER(statement)	NOT	LIKE	'INFER	%'

				AND	UPPER(statement)	NOT	LIKE	'CREATE	INDEX%'

				AND	UPPER(statement)	NOT	LIKE	'%	SYSTEM:%'

GROUP	BY	statement

LETTING	avgResultSize	=	AVG(resultSize)

ORDER	BY	avgResultSize	DESC

Largest	Result	Count	Queries

SELECT	statement,

				avgResultCount,

				COUNT(1)	AS	queries

FROM	system:completed_requests

WHERE	UPPER(statement)	NOT	LIKE	'INFER	%'

				AND	UPPER(statement)	NOT	LIKE	'CREATE	INDEX%'

				AND	UPPER(statement)	NOT	LIKE	'%	SYSTEM:%'

GROUP	BY	statement

LETTING	avgResultCount	=	AVG(resultCount)

ORDER	BY	avgResultCount	DESC

Queries	using	a	Primary	Index

SELECT	*

FROM	system:completed_requests

WHERE	phaseCounts.`primaryScan`	IS	NOT	MISSING

				AND	UPPER(statement)	NOT	LIKE	'%	SYSTEM:%'

ORDER	BY	resultCount	DESC

Queries	that	are	Not	very	Selective

SELECT	statement,

				diff

FROM	system:completed_requests

WHERE	phaseCounts.`indexScan`	>	resultCount

LETTING	diff	=	AVG(phaseCounts.`indexScan`	-	resultCount)

ORDER	BY	diff	DESC

N1QL	Tuning	Guide

12Couchbase	Professional	Services

Queries	Not	Using	a	Covering	Index

SELECT	*

FROM	system:completed_requests

WHERE	phaseCounts.`indexScan`	IS	NOT	MISSING

				AND	phaseCounts.`fetch`	IS	NOT	MISSING

ORDER	BY	resultCount	DESC

Understanding	an	Explain	Plan
Plans	are	built	from	algebras	using	a	visitor	pattern.	A	separate	planner/optimizer	is	used	for	index	selection.
You	can	view	the	explain	plan	but	prefacing	a	query	with	the		EXPLAIN		keyword,	clicking	the	"Explain"
button	in	query	workbench	or	by	executing	a	query	and	viewing	the	"Plan	Text".	The	table	below	describes
the	various	attributes	you	see	in	the	explain	plan	and	how	to	interpret	them.	Reference	the	Operators
Appendix	for	a	complete	list	of	all	operators.

Attributes

Attribute Description

phaseTimes Cumulative	execution	times	for	various	phases	involved	in	the	query	execution,
such	as	authorize,	indexscan,	fetch,	parse,	plan,	run	etc.

phaseCounts Count	of	documents	processed	at	selective	phases	involved	in	the	query
execution,	such	as	authorise,	indexscan,	fetch,	parse,	plan,	run	etc.

phaseOperators

Indicates	the	number	of	each	kind	of	query	operators	involved	in	different	phases
of	the	query	processing.	For	instance,	this	example,	one	non-covering	index	path
was	taken,	which	involves	1	indxeScan	and	1	fetch	operators.	

A	join	would	have	probably	involved	2	fetches	(1	per	keyspace)	

A	union	select	would	have	twice	as	many	operator	counts	(1	per	each	branch	of
the	union).	

This	is,	in	essence,	the	count	of	all	the	operators	in	the		executionTimings	
field.

#operator Name	of	the	operator.

#stats These	values	will	be	dynamic,	depending	on	the	documents	processed	by	various
phases	up	to	this	moment	in	time.

#itemsIn Number	of	input	documents	to	the	operator.

#itemsOut Number	of	output	documents	after	the	operator	processing.

#phaseSwitches

Number	of	switches	between	executing,	waiting	for	services,	or	waiting	for	the
goroutine	scheduler.

execTime	-	Time	spent	executing	the	operator	code	inside	N1QL	query
engine.
kernTime	-	Time	spent	waiting	to	be	scheduled	for	CPU	time.
servTime	-	Time	spent	waiting	for	another	service,	such	as	index	or	data.

For	index	scan,	it	is	time	spent	waiting	for	GSI/indexer
For	fetch,	it	is	time	spent	waiting	on	the	KV	store

N1QL	Tuning	Guide

13Couchbase	Professional	Services

These	statistics	(kernTime	,		servTime	,	and		execTime)	can	be	very	helpful	in	troubleshooting
query	performance	issues,	for	example	as:

A	high		servTime		for	a	low	number	of	items	processed	is	an	indication	that	the	indexer	or	KV	store	is
stressed.
A	high		kernTime		means	there	is	a	downstream	issue	in	the	query	plan	or	the	query	server	having
many	requests	to	process	(so	the	scheduled	waiting	time	will	be	more	for	CPU	time).

When	tuning	(or	writing)	a	N1QL	statement	the	goal	is	to	drive	from	the	query	that	has	the	most	selective
filter.	This	means	that	there	are	fewer	documents/keys	are	passed	to	the	next	step.	If	the	next	step	is	a	join,
then	this	means	that	fewer	documents	are	joined.	Check	to	see	whether	the	access	paths	are	optimal.

When	examining	the	optimizer	execution	plan,	look	for	the	following:

The	driving	query/subquery	has	the	best	filter.
The	join	order	in	each	step	returns	the	fewest	number	of	rows	to	the	next	step	(that	is,	the	join	order
should	reflect,	where	possible,	going	to	the	best	not-yet-used	filters).
Consider	the	predicates	in	the	N1QL	statement	and	the	number	of	documents	being	returned.
Ensure	that	the	right	indexes	are	being	used.	Telltale	signs	of	poor	performance	are	that	the	index	you
wouldn't	expect	is	being	used	e.g.	Primary	Index	or	if	the	index	can	be	covering	is	not	being	used.	In
general,	a	smaller	more	restrictive	index	will	more	performant	than	a	primary	index.
Determine	why	an	index	is	not	used	for	selective	predicates
Ensure	that	the	SPANS	are	correctly	being	leveraged	for	an	index.	Even	if	the	index	is	being	used	by	the
optimizer	if	you	are	not	able	to	push	out	appropriate	SPANS	to	the	optimizer	the	query	performance	will
suffer

Understanding	Cardinality	and	Selectivity
Cardinality	and	selectivity	play	a	crucial	role	in	index	tuning	and	optimization	as	they	can	provide	measurable
insights	into	your	data	set	and	effectiveness	of	the	index,	pointing	you	to	where	specific	optimizations	can	be
made.

Cardinality	refers	to	the	individual	uniqueness	of	values	in	a	specific	index	key.	Each	index	key	(document
property)	emitted	into	the	index	will	have	varying	degrees	of	cardinality.	Cardinality	can	be	broken	down	into
roughly	3	different	types:

High-Cardinality:	Refers	to	values	that	are	unique	or	very	uncommon	within	the	index	key.	Examples
include	fields	such	as	GUIDs,	IDs,	email	addresses,	and	usernames.
Normal-Cardinality:	Refers	to	values	that	are	somewhat	uncommon	but	not	necessarily	unique	within	the
index	key.	Examples	include:	first	/	middle	/	last	name,	zip	codes.	There	are	last	names	/	surnames	that
very	well	may	be	unique	in	the	data	set,	however,	if	you	were	to	examine	all	of	the	distinct	values	you'll
find	groupings	of	certain	values	(i.e.	Jones).
Low-Cardinality:	Refers	to	values	that	are	common	within	the	data	set	and	have	very	few	possible
values.	Examples	include	status,	gender,	and	booleans.	Fields	that	have	little	uniqueness	and	are
common	across	the	index,	examples	are	status,	gender,	and	booleans.

Selectivity	is	the	measure	of	variation	in	unique	values	in	a	given	data	set	and	it	is	represented	as	a	number
between		0	-	1		or		0	-	100%	.	The	formula	to	calculate	selectivity	can	be	represented	as	follows:

N1QL	Tuning	Guide

14Couchbase	Professional	Services

https://en.wikipedia.org/wiki/Cardinality_%28SQL_statements%29

selectivity	=	cardinality/(number	of	records)	*	100

or	more	simply	stated:

#	of	Distinct	Values	/	Total	#	of	Records	=	Selectivity

Cardinality	and	Selectivity	can	be	applied	to	any	"data	set"	such	as	an	index,	query	or	bucket.	In	general	for
database	indexes,	the	higher	cardinality	->	better	selectivity	->	faster	scans	->	increased	performance.
Consider	the	table	below:

Name Breed Gender Origin	Country

1 Oakley German	Shepherd M Germany

2 Zeus Doberman	Pinscher M Germany

3 Darby Doberman	Pinscher F Germany

4 Rocky Bulldog M United	Kingdom

5 Lucy Labrador	Retriever F Canada

6 Buddy Golden	Retriever M United	Kingdom

7 Molly Pug F China

8 Sadie Labrador	Retriever F Canada

9 Max Boxer M Germany

10 Simba Great	Dane M Germany

Cardinality 10 6 2 4

Selectivity 100% 60% 20% 40%

Examples

Using	the		travel-sample		bucket,	we'll	calculate	two	selectivity	values	for	some	of	the	sample	indexes:

Projection	Selectivity:	This	is	a	measure	of	the	#	of	documents	in	the	bucket	that	match	the	index
filter/	WHERE		predicate	and	contain	the	leading	field.	This	is	often	referred	to	as	"index	segmentation".
Index	Selectivity:	This	is	a	measure	of	the	number	of	unique	values	in	the	index	compared	to	the	total	#
of	entries	in	the	index.

For	optimum	performance,	you	will	want	a	relatively	low	percentage	of	Projection	Selectivity	as	this
means	the	index	is	smaller,	and	a	higher	value	for	Index	selectivity	as	this	means	there	is	a	lot	of
uniqueness	within	the	index.

Initially,	we	need	to	get	the	total	#	of	documents	in	the	bucket,	as	we	will	reuse	this	value	in	all	of	our
calculations:

N1QL	Tuning	Guide

15Couchbase	Professional	Services

SELECT	RAW	COUNT(1)

FROM	`travel-sample`

[

		31591

]

Example	1:		def_type		index

CREATE	INDEX	`def_type`	ON	`travel-sample`(`type`)

Determine	the	total	number	of	records	in	the	index,	this	query	will	push	the		COUNT()		down	to	the	indexer,
and	we	trigger	the	use	of	the	index	by	referencing	the	first	field	in	the	index.	If	needed	you	could	optionally
specify	a		USE	INDEX()		statement	to	ensure	the	index	is	used:

SELECT	COUNT(1)

FROM	`travel-sample`

WHERE	type	IS	NOT	MISSING

[

		31591

]

Next,	we	need	to	determine	the	total	number	of	possible	unique	values	in	the	index:

SELECT	RAW	COUNT(DISTINCT	type)

FROM	`travel-sample`

WHERE	type	IS	NOT	MISSING

[

		5

]

Description Formula Selectivity

Projection	Selectivity (31591	/	31591)	*	100 100%

Index	Selectivity (5	/	31591)	*	100 0.015%

Example	2:		def_faa		index

CREATE	INDEX	`def_faa`	ON	`travel-sample`(`faa`)

N1QL	Tuning	Guide

16Couchbase	Professional	Services

Determine	the	total	number	of	records	in	the	index:

SELECT	RAW	COUNT(1)

FROM	`travel-sample`

WHERE	faa	IS	NOT	MISSING

[

		1968

]

Next,	we	need	to	determine	the	total	number	of	possible	unique	values	in	the	index:

SELECT	RAW	COUNT(DISTINCT	faa)

FROM	`travel-sample`

WHERE	faa	IS	NOT	MISSING

[

		1708

]

Description Formula Selectivity

Projection	Selectivity (1968	/	31591)	*	100 6.23%

Index	Selectivity (1708	/	1968)	*	100 86.79%

Example	3:		def_country		index

CREATE	INDEX	`def_country`	ON	`travel-sample`(`country`,	`type`)

Determine	the	total	number	of	records	in	the	index:

SELECT	RAW	COUNT(1)

FROM	`travel-sample`

WHERE	country	IS	NOT	MISSING

[

		7567

]

N1QL	Tuning	Guide

17Couchbase	Professional	Services

Next,	we	need	to	determine	the	total	number	of	possible	unique	values	in	the	index.	For	this	example,
however,	there	are	two	index	keys		country		and		type	.	The	selectivity	depends	on	how	the	index	will
be	used	and	when	optimizing	it	is	important	to	understand	how	the	cardinality	of	one	key	can	affect	the	other.

Example	3.a

SELECT	*

FROM	`travel-sample`

WHERE	country	=	'United	States'

SELECT	RAW	COUNT(DISTINCT	country)

FROM	`travel-sample`

WHERE	country	IS	NOT	MISSING

[

		3

]

Example	3.b

SELECT	*

FROM	`travel-sample`

WHERE	country	=	'United	States'	AND	type	=	'landmark'

When	both	keys	are	used,	the	selectivity	can	be	described	in	two	ways,	the	first	is	the	total	uniqueness	of
both	keys	when	combined	together:

SELECT	RAW	COUNT(DISTINCT	country	||	type)

FROM	`travel-sample`

WHERE	country	IS	NOT	MISSING

[

		12

]

Example	3.c

The	second	is	#	of	unique	keys	for	the	second	index	key	which	matches	the	previous	index	key:

SELECT	RAW	COUNT(1)

FROM	`travel-sample`

WHERE	country	=	'United	States'

N1QL	Tuning	Guide

18Couchbase	Professional	Services

[

		3948

]

SELECT	RAW	COUNT(DISTINCT	type)

FROM	`travel-sample`

WHERE	country	=	'United	States'

[

		4

]

Description Formula Selectivity

Projection	Selectivity (7567	/	31591)	*	100 23.95%

Index	Selectivity	(3.a) (3	/	7567)	*	100 0.039%

Index	Selectivity	(3.b) (12	/	7567)	*	100 0.16%

Index	Selectivity	(3.c) (4	/	3948)	*	100 0.10%

Summary

Both	cardinality	and	selectivity	can	affect	the	performance	of	IndexScans,	and	you	should	always	consider
their	implications	as	it	relates	to	your	access	patterns	and	query	predicates.	Having	a	solid	understanding	of
cardinality	and	selectivity	as	it	relates	to	your	data	set	can	provide	solid	guidance	in	the	tuning	and
determining	the	order	of	index	keys	within	the	index.

Understanding	Covering	Indexes	and	TTLs
When	using	covering	indexes,	there	are	some	important	considerations	in-terms	of	how	your	N1QL	queries
are	constructed	to	ensure	they	do	NOT	return	stale	data	from	your	indexes(GSIs).	To	better	understand	this
concept,	it's	important	to	have	a	basic	understanding	of	document	expiration	and	how	it	works.

Example	Use	Case

To	prove	the	importance	of	this	concept,	let's	consider	a	3-Legged	OAuth	grant	flow	scenario	that	uses	a
covering	index	and	also	has	documents	with	TTLs	set	to	10	minutes.	After	then	10	minute	expiry,	the
document(s)	with	this	TTL	will	expire	and	no	longer	be	available	for	use.

Example	model	using	a	Document	Key	of:		temp:code:7zk5ZDczMzRlNDEwYLj	

{

				"scopes":	[

								"account.read",

N1QL	Tuning	Guide

19Couchbase	Professional	Services

https://docs.couchbase.com/server/current/learn/buckets-memory-and-storage/expiration.html

								"account.update",

								"groups.read"

],

				"expiry":	1571668070320,

				"userID":	"34200980012",

				"docType":	"tempCode",

				"email":	"user@yourdomain.com",

				"roledID":	"1"

}

Example	Index

CREATE	INDEX	idx_temp_code	ON	bucket_name(

		email,	userid,	scopes,	expiry,	META().expiration

)

WHERE	docType	=	"tempCode"

The	example	query	below	returns	documents	after	the	bucket	TTL	has	expired	and	yields	stale	data.

Example	N1QL	Query	with	Unexpected	Results

SELECT	meta().expiration,	email,	scopes,	userid

FROM	bucket_name

WHERE	docType="tempCode"	AND	email="user@yourdomain.com"

Why	does	this	happen?

When	a	document's	expiration	is	reached(i.e.	TTL	expires),	it	is	deleted	when	one	of	the	following	occurs:

expiry	pager	runs(default	every	60	minutes)
compaction	runs(default	30%	fragmentation)
attempt	is	made	to	access	the	document(this	only	applies	to	KV	operations)

The	issue	in	the	case	of	covering	indexes,	is	that	N1QL	does	not	currently	use	the	underlying	capabilities	of
the	Subdoc	API	when	a	query	is	executed,	so	the	metadata	associated	with	the	document	is	not	taken	into
consideration	during	the	phases	of	query	execution.	Therefore,	we	have	to	ensure	the	queries	encapsulate
the	appropriate	logic	and	provide	the	expected	results.

The	solution	is	simple	and	to	obtain	accurate	results,	all	we	need	to	do	is	modify	our	queries	to	have	an
additional	condition.	So,	to	solve	for	this	situation,	we	simply	add	a	condition	in	the	WHERE	clause	to
reference	the		meta().expiration		and	make	sure	it	is	greater	than	the	current	time(i.e.
	NOW_MILLIS()).

Example	N1QL	Query	with	Expected	Results

SELECT	meta().expiration,email,scopes,userid

FROM	bucket_name

WHERE	docType="tempCode"	AND	email="user@yourdomain.com"

N1QL	Tuning	Guide

20Couchbase	Professional	Services

		AND	TOSTRING(META().expiration)	>	SPLIT(TOSTRING(NOW_MILLIS()	/	1000),	"."

)[0]

Tuning	Tips	and	Advice

Tip	1:	Use	USE	KEYS

If	you	know	the	Document	Id/Key	of	the	document,	you	should	leverage	the	USE	KEYS	clause.	This
bypasses	the	Index	Service	(hence	bypassing	network,	scans,	index	results	and	processing)	-	it's	the	closest
thing	you	have	on	the	N1QL	side	comparable	to	a	KV	fetch.	The	optimizer	will	use	a	KeyScan	when	you	use
the	USE	KEYS	instead	of	an	Index	or	Primary	Scan.	When	the	key	is	known	and	returning	the	entire
document	is	required,	always	preference		USE	KEYS		over	a		META().id		index	scan.

SELECT	*	FROM	`travel-sample`	USE	KEYS	["landmark_37588"];

You	can	specify	multiple	values	in		USE	KEYS		if	you	are	querying	for	multiple	documents.

SELECT	*	FROM	`travel-sample`	USE	KEYS	["landmark_37588",	"landmark_37603"]

;

JOIN	operations	are	also	done	using	the	document	keys.

SELECT	*	FROM	ORDERS	o	INNER	JOIN	CUSTOMER	c	ON	KEYS	o.id;

SELECT	*	FROM	ORDERS	o	USE	KEYS	["ord:382"]	INNER	JOIN	CUSTOMER	c	ON	KEYS	o.

id;

As	this	query	is	performing	a	KV	GET()	via	N1QL,	it	would	be	even	more	performant	to	bypass	N1QL
altogether	and	issue	a	KV	GET()	directly	via	the	SDK.		bucket.get("landmark_37588")	

Note	that	when	selecting	specific	field(s),	a	covered	index	scan	may	be	faster	than	performing	the	data
service	fetch	when	working	with	large	documents	or	a	long	list	of	keys.

Tip	2:	Do	not	Index	Values	that	are	an	EQUALITY	predicate	of	the	Index

Remove	any	index	keys/expressions	that	are	listed	in	both	the	index	and	the	indexes		WHERE		statement	as
an	equality	predicate.	These	values	would	have	zero	cardinality	and	do	not	need	to	be	indexed	as	they	would
result	in	slower	IndexScans,	they	simply	need	to	prevent	documents	who	do	not	satisfy	the	condition	as	true
from	being	added	to	the	index.	The	query/index	services	are	intelligent	enough	to	understand	a	query	and
automatically	cover	values	that	are	present	as	an	equality	predicate	in	the	index.

Consider	the	following	query:

N1QL	Tuning	Guide

21Couchbase	Professional	Services

https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/from.html#use-keys-clause
https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/select-syntax.html#_join-clause

SELECT	userId,	firstName,	lastName

FROM	ecommerce

WHERE	docType	=	"user"	AND	username	=	"johnsmith21"

Now	consider	the	following	indexes,	all	of	which	will	satisfy	the	query	above:

CREATE	INDEX	idx_usernames	ON	ecommerce(docType,	username)

This	index	emits	both		docType		and		username		into	the	index.	Not	only	is		username		more	unique,
but	you	would	expect	that	this	index	only	contained	just	"user"	documents.	However,	this	index	would	contain
an	entry	for	every	single	document	where	the	document	had	a		docType		property,	regardless	of	whether
or	not	it	has	a		username		property	as	only	the	leading	key	needs	to	qualify.	Think	of	the	leading	key
having	a		WHERE	docType	IS	NOT	MISSING		statement.

CREATE	INDEX	idx_usernames	ON	ecommerce(username,	docType)

This	index	would	successfully	limit	the	indexes	scope	to	just	documents	that	contained	a		username	
property,	but	again	this	is	not	guaranteed.	we	could	filter	the	index	by	adding	a		WHERE	docType	=
"user"		predicate:

CREATE	INDEX	idx_usernames	ON	ecommerce(username,	docType)

WHERE	docType	=	"user"

However,	by	having	the		docType		emitted	into	the	index	when	it	will	only	be	a	single	value,	it	is	just	wasted
bytes.

CREATE	INDEX	idx_usernames	ON	ecommerce(username)

WHERE	docType	=	"user"

This	is	the	best	choice	of	all	of	the	indexes	above,	as	it	will	filter	out	any	documents	that	do	not	satisfy
	WHERE	docType	=	"user"		and	only	index	the	remaining	documents	that	contain	a		username	
property.

Tip	3:	Every	Index	should	be	Filtered	i.e	contain	a	WHERE	clause

Often	times	referred	to	as	"Partial	Index",	filtered	indexes	are	an	index	on	a	subset	of	documents	in	the
keyspace	which	are	relevant	to	the	query	being	executed.	The	result	is	a	smaller	index,	which	results	in
faster	scans,	yielding	faster	response	times.

CREATE	INDEX	idx_cx3	ON	`travel-sample`	(state,	city,	name.lastname)

WHERE	type	=	'hotel'

CREATE	INDEX	idx_cx4	ON	customer	(state,	city,	name.lastname)

WHERE	type	=	'hotel'	and	country		=	'United	States'	AND	ratings	>	2

N1QL	Tuning	Guide

22Couchbase	Professional	Services

Tip	4:	Index	Key	Order	and	Predicate	Types

The	order	of	index	keys,	as	well	as	the	cardinality	(uniqueness)	of	the	values	for	a	specific	key/expression,
can	have	a	dramatic	affect	on	query	performance.	Index	keys	should	be	first	ordered	based	on	the	queries
predicate	types	in	the	following	order:

1.	 EQUALITY
2.	 IN
3.	 LESS	THAN
4.	 BETWEEN
5.	 GREATER	THAN
6.	 Array	predicates
7.	 Look	to	add	additional	fields	for	the	index	to	cover	the	query

For	keys	who	share	the	same	predicate	type,	cardinality	comes	into	play.	As	a	general	rule	of	thumb,	order
keys	from	left	to	right	based	on	highest	cardinality	(most	unique)	to	lowest	cardinality	(least	unique)	when
they	share	the	same	predicate	type.	Note	that	the	query	predicates	do	not	need	to	be	listed	in	the	order	in
which	they	are	listed	in	the	index,	the	query	planner	determines	this	automatically.

Consider	the	following	query	and	index:

SELECT	cid,	address

FROM	customer

WHERE	type	=	'premium'

		AND	state	=	'CA'

		AND	zipcode	IN	[29482,	29284,	29482,	28472]

		AND	salary	<	50000

		AND	age	>	45

CREATE	INDEX	idx_orders	ON	customer(state,	zipcode,	salary,	age,	address,	ci

d)

WHERE	type	=	'premium'

Even	though		zipcode		is	more	unique	than		state	,	it	is	being	queried	using	an		IN		statement	which
is	the	equivalent	of	an		OR	.	It	is	more	efficient	to	reduce	the	index	entries	first	by		state		then	by
	zipcode	,	however	if	our	primary	access	pattern	was		zipcode	=	29482	,	then	we	would	want	to	list	it
first.

Tip	5:	Index	to	Avoid	Sorting

Each	index	stores	data	pre-sorted	by	the	index	keys,	matching	the	keys	in	the	ORDER	BY	and	leading	N
keys	will	avoid	sorting.	When	exploiting	the	index	order,	the	index	keys	should	be	added	after	all	predicates
and	before	any	additional	values	that	may	be	used	to	cover	the	query.

Take	a	scenario	where	you	want	to	retrieve	the	order	history	for	a	given	user,	consider	the	following	index
and	query:

N1QL	Tuning	Guide

23Couchbase	Professional	Services

https://docs.couchbase.com/server/6.0/learn/services-and-indexes/indexes/index_pushdowns.html#using-index-order

CREATE	INDEX	`idx_order_history`	ON	`ecommerce`	(

		userId,	orderDate,	orderTotal,	orderId

)

WHERE	docType	=	"order"

SELECT	orderId,	orderDate,	orderTotal

FROM	ecommerce

WHERE	docType	=	"order"	AND	userId	=	123

ORDER	BY	orderDate	DESC

If	you	examine	the		EXPLAIN		plan	for	the	query	near	the	bottom	you	will	see:

{

				"#operator":	"Order",

				"sort_terms":	[{

								"desc":	true,

								"expr":	"cover	((`customer`.`orderDate`))"

				}]

}

The	Order	operator	takes	all	of	the	documents	from	the	previous	operator	(IndexScan)	and	must	loop	over	all
of	the	records	and	sort	them	in-memory	based	on	the		ORDER	BY		statement.	Data	is	pre-sorted		ASC		by
default,	with	the	previous	index	the		ASC		is	implied	but	would	look	like:

CREATE	INDEX	`idx_order_history2`	ON	`customer`	(

		userId	ASC,	orderDate	ASC,	orderTotal	ASC,	orderId	ASC

)

WHERE	docType	=	"order"

Knowing	that	we	want	our	result	ordered	by	the		orderDate	DESC	,	we	can	inform	the	indexer	to	store	the
data	in	the	order	in	which	we	will	use	it:

CREATE	INDEX	`idx_order_history_sorted`	ON	`ecommerce`	(

		userId,	orderDate	DESC,	orderTotal,	orderId

)

WHERE	docType	=	"order"

Now	if	we	issue	an		EXPLAIN		on	the	query,	you	will	see	the	"Order"	operator	is	missing	as	it	is	not	needed
since	the	result	is	already	in	the	appropriate	order.

Tip	6:	Use	Covering	Indexes

N1QL	Tuning	Guide

24Couchbase	Professional	Services

Covering	Indexes	are	indexes	which	contain	all	of	the	query	predicates	(WHERE),	all	of	the	returning	values
(SELECT	...)	and	any	other	processed	attributes.	When	the	index	contains	all	of	these	values,	it
"covers"	the	query	and	the	Query	service	does	not	need	to	go-to	the	Data	service	to	obtain	values	for	those
fields.	Covering	indexes	make	queries	efficient	since	it	bypasses	the	"FETCH"	from	the	Data	service	saving	a
significant	amount	of	data	transfer	and	processing.	Both	the	Final	Project	and	Filtering	can	be	"covered"	if	an
index	is	created	appropriately.

Consider	the	following	index:

CREATE	INDEX	idx_cx3	ON	customer(state,	city,	name.lastname)

WHERE	status	=	'premium'

The	following	diagram	illustrates	the	query	execution	workflow	for	a	query	that	is	not	"covered":

SELECT	*

FROM	customer

WHERE	state	=	'CA'	AND	status	=	'premium'

When	performing	a		SELECT	*	,	a	data	service	fetch	will	always	be	required,	and	the	query	cannot	be
covered.

The	following	diagram	illustrates	the	query	execution	workflow	where	the	query	is	covered:

SELECT	status,	state,	city

FROM	customer

WHERE	state	=	'CA'	AND	status	=	'premium'

N1QL	Tuning	Guide

25Couchbase	Professional	Services

As	you	can	see	in	the	second	diagram,	a	well-designed	query	that	uses	a	covering	index	avoids	the
additional	steps	to	fetch	the	data	from	the	data	service.	This	results	in	a	considerable	performance
improvement.

We	can	verify	that	a	query	is	"covered"	by	reviewing	the	explain	plan:

{

				...

				"~children":	[{

												"#operator":	"IndexScan3",

												"covers":	[

																"cover	((`customer`.`state`))",

																"cover	((`customer`.`city`))",

																"cover	(((`customer`.`name`).`lastname`))",

																"cover	((meta(`customer`).`id`))"

],

												"filter_covers":	{

																"cover	((`customer`.`status`))":	"premium"

												},

												...

								}

]

}

It	is	important	to	note	that	a	"FETCH"	operation	is	not	necessarily	a	bad	thing,	and	every	query	does	not
always	need	to	be	"covered".	Covering	indexes	offer	the	performance	benefit	of	having	all	of	the	data	in
a	single	place	and	avoid	a	scatter-gather	(i.e.	fetches),	but	a	covering	index	could	potentially	be	fairly
large	and	should	be	properly	sized.	A	query	which	performs	an	IndexScan	and	returns	a	few	records
then	performs	a	fetch,	might	be	perfectly	acceptable	and	meet	SLAs.	However,	a	query	that	returns
tens	or	hundreds	of	thousands	of	rows	and	has	to	perform	a	fetch,	could	have	a	dramatic	effect	on
system	performance.

N1QL	Tuning	Guide

26Couchbase	Professional	Services

Tip	7:	Never	Create	a	Primary	Index	in	Production

Unlike	relational	databases,	Couchbase	and	N1QL	do	not	require	a	primary	index	as	long	as	the	query	has	a
viable	secondary	index	to	access	the	data.

A	primary	index	scan	is	analogous	to	a	full	table	scan	in	relational	database	systems.	However,	where	a
table	scan	stops	at	the	"table",	a	primary	index	scan	will	perform	the	equivalent	of	a	full	database	scan.
N1QL	will	retrieve	every	document	ID	in	the	entire	keyspace	from	the	primary	index,	then	fetch	each
document	in	the	bucket	and	finally	performing	any	predicate-join-project	processing.

When	a	primary	index	is	present,	even	though	it	may	never	be	"intended"	to	be	used,	it	acts	as	a	fallback	for
any	query	who	does	not	have	a	satisfying	index	at	execution	time.	Think	failure	scenarios,	if	the	queries
qualifying	index(es)	go	offline	for	whatever	reason	(i.e.	node	failure)	and	a	primary	index	exists,	it	will	be
used,	which	could	cause	unintended	and	unexpected	side-effects.

Tip	8:	Avoid	"docType"	Only	Index

A	keyspace	(bucket)	in	Couchbase	is	a	logical	namespace	for	one	or	more	types	of	documents.	Standard
practice	in	Couchbase	is	to	ensure	that	each	document	has	a	common		docType	,		type	,		_class	,
etc.	property	that	identifies	the	model/purpose	of	the	document.	This	property	is	not	only	a	good	practice	it
allows	for	efficient	indexing	(i.e.	Partial	Index).

While	filtering	on	the		docType		is	strongly	encouraged	as	it	creates	a	partial	index	on	a	subset	of
documents,	creating	an	index	on	the		docType		as	a	leading	or	stand-alone	index	key	is	inefficient	and	has
extremely	low	cardinality.

CREATE	INDEX	`idx_docType`	ON	`bucket`	(`docType`)

Indexes	like	this	can	inadvertently	cause	slow-performing	queries	and	unexpected	explain	plans.	For
example,	it	increases	the	likelihood	of	an	IntersectScan.	More	importantly	though,	if	you've	established	the
use	of	a		docType		property	on	each	of	your	documents,	more	than	likely	developers	writing	N1QL
statements	will	add	that	as	a	predicate	to	each	of	their	queries,	i.e.:

SELECT	*

FROM	bucket

WHERE	docType	=	"user"	AND	username	=	"johnsmith32"

Just	as	a	primary	index	can	be	inadvertently	used	as	a	fallback	when	expected	indexes	are	not	found	and
cause	potentially	a	high	number	of	"FETCH"	operations,	a		docType		index	can	do	exactly	the	same	thing
and	this	is	why	it	should	be	avoided.

Tip	9:	Partition	Indexes

When	an	index	is	created,	the	entire	index	only	exists	on	a	single	node	(replicas	excluded).	If	the	index
grows	in	size	and	can	no	longer	fit	into	memory	in	the	case	of	MOI	indexes,	or	the	resident	ratio	drops	low	in
the	case	of	Standard	GSI,	you	have	to	either	add	more	resources	to	the	node	or	you	can	partition	the	index.

N1QL	Tuning	Guide

27Couchbase	Professional	Services

The	process	of	index	partitioning	involves	distributing	a	single	large	index	across	multiple	index	nodes	in	the
cluster.

Prior	to	Couchbase	Server	5.5	this	was	achieved	by	creating	multiple	smaller	range	partitioned	or	partial
indexes.	The	following	query	is	our	example:

SELECT	userId,	firstName,	lastName

FROM	ecommerce

WHERE	docType	=	'user'	AND	LOWER(username)	=	'johnsmith32'

The	following	is	the	initial	index	that	is	used	to	cover	the	query:

CREATE	INDEX	idx_users	ON	ecommerce(LOWER(username),	userId,	firstName,	last

Name)

WHERE	docType	=	'user'

Over	time	the	index	grows	in	size	and	might	not	be	performing	as	expected,	can	no	longer	fit	on	a	single
node,	etc.	and	needs	to	be	partitioned	across	multiple	nodes:

CREATE	INDEX	idx_users_AtoM	ON	ecommerce(LOWER(username),	userId,	firstName,

	lastName)

WHERE	docType	=	'user'	AND	LOWER(username)	>=	'a'	AND	LOWER(username)	<	'n'

WITH	{	"nodes":	["index_host1"]}

CREATE	INDEX	idx_users_NtoZ	ON	ecommerce(LOWER(username),	userId,	firstName,

	lastName)

WHERE	docType	=	'user'	AND	LOWER(username)	>=	'n'	AND	LOWER(username)	<	'['

WITH	{	"nodes":	["index_host2"]}

The	same	query	above	works	without	any	changes.	Indexes	can	be	partitioned	in	an	infinite	number	of	ways.
As	of	Couchbase	Server	5.5+	you	can	define	a	single	index,	the	partitioning	strategy/keys	as	well	as	the
number	of	partitions	(16	by	default)	to	create	and	we'll	manage	the	distribution	across	the	cluster
automatically	for	you.	Index	Partitioning	can	be	implemented	by	specifying	the	[PARTITION	BY]	clause.

CREATE	INDEX	idx_users	ON	ecommerce(LOWER(username),	userId,	firstName,	last

Name)

WHERE	docType	=	'user'

PARTITION	BY	HASH(LOWER(username))

WITH	{	"num_partitions":	10	}

Index	partitioning	has	the	benefit	of	"Partition	Elimination",	where	the	query	planner	understands	that
	WHERE	...	LOWER(username)	=	'johnsmith32'	,	is	an	equality	and	it	knows	which	of	the	10
partitions	that	indexed	value	lives	on,	and	will	scan	just	that	single	partition.	Be	sure	to	evaluate	the
key/expressions	that	you're	using	for	partitioning	as	it	can	have	an	impact	on	the	scans.

N1QL	Tuning	Guide

28Couchbase	Professional	Services

https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/index-partitioning.html
https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/index-partitioning.html

Tip	10:	Avoid	the	use	of	SELECT	*

Many	developers	or	frameworks	will	use		SELECT	*	FROM	...		as	much	simpler	and	less	work	than
typing	out	individual	property		SELECT	orderId,	orderDate,	orderTotal	FROM	However,	in
general,	this	is	not	a	wise	thing	to	do	regardless	of	the	database	being	used,	and	in	some	situations,	it	can
have	serious	performance	implications.

Using		SELECT	*		returns	all	of	the	properties	for	each	document.	Oftentimes	a	query	does	not	actually
need	all	of	the	properties,	only	a	select	few.	This	causes	unnecessary	I/O,	resulting	in	a	larger	payload	size
that	must	be	transferred	across	the	wire	back	to	the	application,	where	a	smaller	payload	is	more	performant.

The	most	important	reason	to	not	use		SELECT	*		is	you	are	limiting	what	the	query	optimizer	can	do	to
pick	more	appropriate	indexes	(i.e.	a	covering	index).	When		SELECT	*		is	used,	no	matter	what,	100%	of
the	time	a	"FETCH"	operation	will	be	performed	and	it	is	impossible	to	further	optimize	the	query	without
changing	the	underlying	code	/	N1QL	statement.

Consider	the	following	scenario,	where	you	want	to	retrieve	all	of	the	airlines	for	a	given	country	and	use	the
	id	,		name		and		callsign		properties.	Initially,	our	index	might	look	like:

CREATE	INDEX	`idx_airline_country`	ON	`travel-sample`	(country)

WHERE	type	=	'airline'

Now	compare	the	following	queries:

SELECT	*

FROM	`travel-sample`

WHERE	type	=	'airline'	AND	country	=	'United	States'

SELECT	id,	name,	callsign

FROM	`travel-sample`

WHERE	type	=	'airline'	AND	country	=	'United	States'

Both	queries	ultimately	achieve	the	result	and	based	on	our	initial	index	both	queries	would	perform	a
"FETCH"	operation,	because	of		*		in	query	one,	and	because	query	two	contains	properties	that	are	not	in
the	index.	Hypothetically	let's	say	that	this	query	is	performed	10	times	per	second,	the	index	may	be
perfectly	fine	and	meet	SLAs.

You	have	appropriate	monitoring	and	profiling	in	place.	Over	time	our	application	becomes	more	and	more
popular,	and	our	query	is	now	being	performed	1,000	times	per	second.	Originally,	both	queries	returned	127
records,	and	a	"FETCH"	was	being	performed	where		127	docs	*	10qps	=	1,270	get	ops/sec	,
but	is	now		127	docs	*	1000qps	=	127,000	get	ops/sec	.	This	is	causing	system	performance
issues	and	you	realize	that	improvements	need	to	be	made	and	the	query	needs	a	covering	index,	the	profile
of	the	second	query	tells	you	exactly	what	fields	need	to	be	covered	and	you	create	the	following	index	in
production:

CREATE	INDEX	`idx_airline_country_cvr`	ON	`travel-sample`	(country,	id,	name

,	callsign)

N1QL	Tuning	Guide

29Couchbase	Professional	Services

WHERE	type	=	'airline'

If	you	were	using	the	second	query,	the	number	of	gets/second	would	go	from		127,000		to		0		and	you
were	able	to	achieve	this	without	a	single	code	change	or	deployment	to	the	application.	However,	if	you
were	using	the	first	query	this	index	would	have	not	offered	any	performance	benefit,	the	application	code
would	have	to	be	updated	and	then	deployed	to	see	the	performance	gains.

Tip	11:	Avoid	the	use	of	USE	INDEX

When	specified	the	USE	INDEX	clause	hints	to	the	query	optimizer	that	the	index(es)	listed	should	be
preferred.	The	query	optimizer	is	a	rule-based	optimizer,	and	will	generally	pick	the	most	appropriate	index	to
satisfy	a	query.	Additionally,	with	every	release	of	Couchbase,	there	are	improvements	made	to	the
optimizer,	making	it	more	efficient.

If	a		USE	INDEX(...)		is	specified	it	couples	code	and	operations.	Meaning	the	index	that	is	specified,
cannot	be	dropped	without	a	code	change,	as	the	code	is	expecting	the	index	to	be	there	and	if	it	is	not	this
would	result	in	an	error.	Moreover,	you	cannot	optimize	the	index	that	is	referenced	without	dropping	it	first
which	would	result	in	a	period	of	downtime	while	the	index	is	being	built	and	the	creation	of	a	more	optimized
index	wouldn't	yield	any	benefit	either	as	it	would	not	be	preferred.

The	use	of	the		USE	INDEX()		statement	can	be	beneficial	with	the	elimination	of	IntersectScans	but
should	be	done	with	caution	for	the	reasons	listed	above.

The		USE	INDEX(...)		clause	can	accept	a	comma-delimited	list	of	indexes.

Tip	12:	Pushdown	Pagination	to	the	Index

Optimizing	pagination	queries	is	usually	the	most	critical	part	of	tuning.	Exploiting	index	ordering	is	even
more	beneficial	when	paginating.	Both	OFFSET	and	LIMIT	are	attempted	to	be	pushed	down	to	the	indexer
whenever	possible,	this	depends	on	a	few	different	factors:

If	the	whole	predicate	(WHERE)	can	be	pushed	down	to	a	single	index	(i.e.	all	index	keys	exist)
An	IntersectScan	is	not	being	performed
If	an		ORDER	BY		clause	is	used,	the	index	keys	must	be	in	the	same	order
There	is	no		JOIN		clause

If	all	of	these	are	true	then	the		LIMIT		and		OFFSET		are	pushed	to	the	indexer,	otherwise	they	are
applied	by	the	query	service	after	all	IndexScans	are	performed.	Take	the	following	index	for	example:

CREATE	INDEX	idx_products	ON	ecommerce	(

		productCategory,	productName,	productPrice,	productId

)

WHERE	docType	=	'product'

This	query	retrieves	all	of	the	products	sorted	by	the		productName		property	and	exploits	the	index	order
so		LIMIT		and		OFFSET		are	pushed	down	to	the	indexer.

N1QL	Tuning	Guide

30Couchbase	Professional	Services

https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/hints.html

SELECT	productId,	productName,	productPrice

FROM	ecommerce

WHERE	docType	=	'product'	AND	productCategory	=	"Electronics"

ORDER	BY	productName	ASC

LIMIT	100

OFFSET	300

This	can	be	verified	by	examining	the		EXPLAIN		plan	of	the	query,	in	the		IndexScan3		#operator	will
show	both	of	the	"limit"	and	"offset"	properties,	indicating	that	they	were	pushed	down	to	the	indexer.

{

				"#operator":	"IndexScan3",

		...

				"index":	"idx_products",

				"limit":	"100",

				"offset":	"300",

		...

}

Now	if	we	adjust	the	query	to	sort	by		productPrice	DESC	.

SELECT	productId,	productName,	productPrice

FROM	ecommerce

WHERE	docType	=	'product'	AND	productCategory	=	"Electronics"

ORDER	BY	productPrice	DESC

LIMIT	100

OFFSET	300

The	query	is	still	covered,	as	before	but	now	the	"Limit"	and	"Offset"	are	pushed	to	the	bottom	of	the
Sequence	and	are	the	last	thing	to	happen	before	the	final	projection:

[

				...

				{

								"#operator":	"Order",

								"limit":	"100",

								"offset":	"300",

								"sort_terms":	[{

												"desc":	true,

												"expr":	"cover	((`customer`.`productPrice`))"

								}]

				},	{

								"#operator":	"Offset",

								"expr":	"300"

N1QL	Tuning	Guide

31Couchbase	Professional	Services

				},	{

								"#operator":	"Limit",

								"expr":	"100"

				}

]

	LIMIT		and		OFFSET		are	generally	the	go	to	for	database	pagination	and	Couchbase	Server	has	many
optimizations	that	make	these	operations	really	fast.	There	is	one	drawback	to	limit/offset	pagination	in	any
database	and	that	is	the	greater	the	offset,	the	longer	the	initial	index	scan	has	to	traverse	the	index	before
the	limit	can	be	implied.	Oftentimes	this	is	negligible,	however,	if	you	want	to	squeeze	every	last	bit	of
performance	out	of	pagination	there	is	another	approach	called	KeySet	Pagination.

Tip	13:	Use	Query	Bindings

It	is	the	responsibility	of	the	application	to	sanitize	and	inspect	dynamic/input	data	before	sending	it	to	the
database.	If	an	application	uses	this	input	to	dynamically	construct	a	query,	it	is	opening	the	database	to	SQL
injection	attacks.

def	airports_in_city(city):

		query_string	=	"SELECT	airportname	FROM	`travel-sample`	WHERE	city="

		query_string	+=	'"'	+	city	+	'"'

		return	cb.n1ql_query(query_string)

This	is	insecure	as	any	value	or	N1QL	statement	could	be	passed	as		city	.	N1QL	allows	the	use	of
placeholders	to	declare	dynamic	query	parameters.	Query	parameters	(named	or	positional)	allow	your
application	to	securely	use	dynamic	query	arguments	for	your	application.

Implement	named	or	positional	parameters	for	all	dynamic	query	arguments.

def	airports_in_city(city):

		query_string	=	"SELECT	airportname	FROM	`travel-sample`	WHERE	city=$1"

		query	=	N1QLQuery(query_string,	city)

		return	cb.n1ql_query(query)

Not	only	is	this	more	secure,	but	it	also	simplifies	query	profiling	and	tuning,	while	the	same	statement	is
issued	with	different	parameters,	it	can	be	profiled	as	the	same.

Tip	14:	Combine	Indexes	with	Shared/Common	Index	Keys

It	can	be	an	easy	habit	to	get	into	of	optimizing	every	query	and	have	a	1:1	ratio	for	the	query	to	index.	This
is	not	necessary	and	can	be	avoided	by	expecting	common	leading	keys	of	various	indexes	and	combining
multiple	indexes	into	a	single	index	that	can	service	multiple	queries.	Take	the	following	queries	an	example:

SELECT	orderId,	orderDate,	orderTotal

FROM	ecommerce

WHERE	docType	=	'orders'

N1QL	Tuning	Guide

32Couchbase	Professional	Services

https://blog.couchbase.com/offset-keyset-pagination-n1ql-query-couchbase/
https://en.wikipedia.org/wiki/SQL_injection
https://docs.couchbase.com/java-sdk/2.7/n1ql-query.html#devguide-named-placeholders

		AND	billing.country	=	'US'

CREATE	INDEX	idx_orders_country	ON	ecommerce	(billing.country)

WHERE	docType	=	'order'

SELECT	orderId,	orderDate,	orderTotal

FROM	ecommerce

WHERE	docType	=	'orders'

		AND	billing.country	=	'US'

		AND	billing.state	=	'CA'

CREATE	INDEX	idx_orders_state_country	ON	ecommerce	(

		billing.state,	billing.country

)

WHERE	docType	=	'order'

SELECT	orderId,	orderDate,	orderTotal

FROM	ecommerce

WHERE	docType	=	'orders'

		AND	billing.country	=	'US'

		AND	billing.state	=	'CA'

		AND	orderTotal	>=	1000

CREATE	INDEX	idx_orders_country	ON	ecommerce	(

		billing.state,	billing.country,	orderTotal

)

WHERE	docType	=	'order'

All	of	these	indexes	can	be	combined	into	a	single	index.	It	should	be	pointed	out	in	this	example,
	billing.country		is	the	first	index	key,	as	the	query	that	uses	it	expects		billing.country		to	be
the	leading	key	of	the	index,	this	may	or	may	not	have	an	effect	on	SLAs	and	should	be	tested	as
	billing.state		has	a	higher	cardinality	than		billing.country		but	may	be	negligible.

CREATE	INDEX	idx_orders_country	ON	ecommerce	(

		billing.country,	billing.state,	orderTotal

)

WHERE	docType	=	'order'

Tip	15:	Use	Prepared	Statements

N1QL	Tuning	Guide

33Couchbase	Professional	Services

When	a	N1QL	statement	is	sent	to	the	server,	the	Query	service	will	inspect	and	parse	the	string,
determining	which	indexes	to	query,	ultimately	defining	a	Query	Plan	to	optimally	satisfy	the	statement.	The
computation	for	the	plan	adds	some	additional	processing	time	and	overhead	for	the	query.

Often-used	queries	can	be	prepared	so	that	the	computed	plan	is	generated	only	once.	Subsequent	queries
using	the	same	query	string	will	use	the	pre-generated	plan	instead,	saving	on	the	overhead	and	processing
of	the	plan	each	time.	Parameterized	queries	are	considered	the	same	query	for	caching	and	planning
purposes,	even	if	the	supplied	parameters	are	different.

There	are	two	approaches	to	implementing	prepared	statements,	choose	one	that	best	fits	your	environment.

SDK	Prepared	Statements

This	method	of	prepared	statements	sets	the		adhoc	=	false		option	for	a	given	query.	The	SDK	will
internally	prepare	the	statement	and	store	the	plan	in	an	internal	cache	specific	to	that	SDK	instance.	After
the	statement	has	been	initially	prepared	the	first	time,	subsequent	calls	to	the	same	statement	will	pass	the
prepared	plan	to	the	Query	service,	eliminating	the	inspection,	parsing,	and	planning	steps	and	start
executing	immediately.

query	=	N1QLQuery("SELECT	airportname	FROM	`travel-sample`	WHERE	country=$1"

,	"USA")

q.adhoc	=	False

Named	Prepared	statements

This	method	of	prepared	statements	is	similar	to	the	previous	option	but	instead	of	the	SDK	managing	the
planning	of	the	queries,	it	would	be	managed	by	the	application	or	through	an	external	process.

First,	the	query	has	to	be	prepared	by	using	a	PREPARE	Statement

PREPARE	unique_name_for_query	FROM

SELECT	airportname	FROM	`travel-sample`	WHERE	country=$1

Once	the	query	has	been	prepared,	the	query	plan	is	cached	in	the	Query	service	and	can	be	executed	by
using	an	EXECUTE	Statement.

query	=	N1QLQuery("EXECUTE	unique_name_for_query",	"USA")

The	tradeoff	is	there	is	a	single	cached	plan	that	can	be	used	by	many	clients,	however,	the	lifecycle	of	the
plan	must	be	maintained.	For	example,	if	the	plan	doesn't	exist	an	error	will	be	thrown,	that	would	need	to	be
trapped	and	then	re-prepare	the	query	and	execute	again.

Tip	16:	Avoid	IntersectScans

An	IntersectScan	is	when	two	or	more	indexes	are	used	to	satisfy	a	query.	This	results	in	two	or	more
separate	IndexScan	operations,	each	returning	back	qualifying	results	(i.e.		meta().id)	and	then
intersecting	the	scans	together	only	returning	results	that	are	present	in	both.	Consider	the	following	query
and	indexes:

N1QL	Tuning	Guide

34Couchbase	Professional	Services

https://docs.couchbase.com/server/6.0/tools/query-workbench.html#query-plans
https://docs.couchbase.com/java-sdk/2.7/n1ql-query.html#prepare-stmts
https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/prepare.html
https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/execute.html

SELECT	*

FROM	`travel-sample`

WHERE	type	=	"landmark"	AND	activity	=	"drink"	AND	country	=	"France"

CREATE	INDEX	`idx_landmark_activity`	ON	`travel-sample`	(activity)

WHERE	type	=	"landmark"

CREATE	INDEX	`idx_landmark_country`	ON	`travel-sample`	(country)

WHERE	type	=	"landmark"

If	you	execute	this	query	it	will	run	in	~100ms,	examining	the	plan	text	shows	that	an	IntersectScan	is
performed,	and	an	IndexScan	is	run	on	each	of	the	above	indexes.	The	scan	on
	idx_landmark_country		returns	388	results	and	the	scan	on		idx_landmark_activity		returns
287	results,	both	of	these	are	passed	to	the	IntersectScan	operator	for	a	total	of	675	records	and	then	filters
that	down	to	388	results.

{

				"~children":	[{

								"#operator":	"IntersectScan",

								"#stats":	{

												"#itemsIn":	675,

												"#itemsOut":	388,

						...

								},

								"scans":	[{

																"#operator":	"IndexScan3",

																"#stats":	{

																				"#itemsOut":	388,

										...

																},

																"index":	"idx_landmark_country",

												},

												{

																"#operator":	"IndexScan3",

																"#stats":	{

																				"#itemsOut":	287,

																},

																"index":	"idx_landmark_activity",

												}

]

				}]

}

N1QL	Tuning	Guide

35Couchbase	Professional	Services

Alternatively,	if	a	composite	index	is	used	instead,	this	will	result	in	a	single	IndexScan	operation	and	be
more	performant.	The	same	query	using	the	index	below	will	execute	in	~17ms.

CREATE	INDEX	`idx_landmark_activity_country`	ON	`travel-sample`	(activity,	c

ountry)

WHERE	type	=	"landmark"

In	general,	a	single	wide	index	(composite	index)	which	meets	the	criteria	will	be	more	performant	than
intersections	on	multiple	singular	indexes.	Only	consider	intersection	when	the	predicate	usage	is	non-
deterministic.

Tip	17:	Avoid	LIKE	Statements

Oftentimes	we	need	to	find	partial	matches	within	a	given	index	key	and	use	a		LIKE		statement.	This	is
useful	and	convenient	syntax,	however,	this	performs	a	range	scan	that	depending	on	the	use	of		%		can	be
a	range	of	the	entire	index	and	result	in	a	lot	of	extra	processing.	For	this	example,	we'll	use	the	following
index	and	base	query:

CREATE	INDEX	idx_landmark_names	ON	`travel-sample`	(name)

WHERE	type	=	"landmark"

SELECT	name

FROM	`travel-sample`

WHERE	type	=	"landmark"

		AND	name	LIKE	'%Theater%'

Execution	Time:	~190ms

Now	let's	examine	the	various	spans	associated	with	the		LIKE		statement:

Statement Low High Inclusion

'%Theater%' "" "[]" 1

'Theater%' "Theater" "Theates" 1

'%Theater' "" "[]" 1

Clearly,	the	second	option		'Theater%'		offers	the	more	performant	range	scan	as	it	is	a	targeted	subset
of	the	index	key	instead	of	the	entire	index.	Optimizing	your		LIKE		queries	to	only	match	on	the	righthand
side	offers	some	performance	benefit,	but	this	is	not	always	a	possibility.

A	powerful	feature	of	N1QL	is	that	it	can	index	individual	array	elements,	not	just	individual	scalar	properties.
While		name		is	a	simple	string,	we	can	use	any	of	the	available	string	functions	to	convert	the	string	into	an
array	(SPLIT,	TOKENS,	SUFFIXES,	etc.)	For	this	example,	we'll	use	the		SUFFIXES()		function.

SELECT	RAW	SUFFIXES("Clay	Theater")

N1QL	Tuning	Guide

36Couchbase	Professional	Services

https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/stringfun.html
https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/stringfun.html#fn-str-suffixes

[

		[

				"Clay	Theater",

				"lay	Theater",

				"ay	Theater",

				"y	Theater",

				"	Theater",

				"Theater",

				"heater",

				"eater",

				"ater",

				"ter",

				"er",

				"r"

]

]

As	this	returns	all	possible	suffixes	of	a	given	string	as	an	array,	we	can	effectively	index	this	array	and	now
remove	the	left-hand		%		from	our	query	providing	a	more	efficient	range	scan.

CREATE	INDEX	idx_landmark_names_suffixes	ON	`travel-sample`	(

		DISTINCT	ARRAY	v

				FOR	v	IN	SUFFIXES(LOWER(name))

		END

)

WHERE	type	=	'landmark'

SELECT	name

FROM	`travel-sample`

WHERE	type	=	"landmark"

		AND	ANY	v	IN	SUFFIXES(LOWER(name))

				SATISFIES	v	LIKE	'theater%'

		END

Execution	Time:	~17ms

This	query	is	now	11	times	faster	than	the	original.	You	should	always	consider	the	size	of	an	array	index,	as
in	this	case	the	larger	the	string	the	larger	the	array	for	each	item	and	the	larger	the	index	size.	Reference

Tip	18:	Consider	Array	Indexes	as	an	alternative	to	OR	Statements

Many	times	we	need	to	write	a	query	that	can	satisfy	"this	OR	that"	and	return	results	from	either	the	left-
hand	or	right-hand	side	of	the		OR	.	Lets	take	a	common	example	where	a	user	needs	to	login	to	an
application	with	their	"username"	OR	"email".

N1QL	Tuning	Guide

37Couchbase	Professional	Services

https://blog.couchbase.com/n1ql-functionality-enhancements-in-couchbase-server-4-5-1/

SELECT	userId,	pwd,	firstName,	lastName

FROM	ecommerce

WHERE	docType	=	'user'

		AND	(

				username	=	'johns'

				OR

				email	=	'johns'

)

And	we'll	start	with	the	following	indexes:

CREATE	INDEX	`idx_username`	ON	`ecommerce`	(username)

WHERE	docType	=	'user'

CREATE	INDEX	`idx_email`	ON	`ecommerce`	(email)

WHERE	docType	=	'user'

Viewing	the	explain	plan	of	this	query	shows	that	a		UnionScan		is	performed	using	two	separate
	IndexScan		operations	on	the		idx_username		and		idx_email	.	A	simple	approach,	in	this	case,
would	be	to	have	the	application	construct	two	separate	queries	and	inspect	the	input	prior	to	issuing	the
query	as	an	email	pattern	is	trivial	to	validate,	which	would	eliminate	the		UnionScan		and	result	in	a	single
	IndexScan	.	This	might	not	always	be	possible,	so	next,	you	might	drop	the	previous	indexes	and	attempt
to	create	a	single	index	to	cover	both		username		and		email		address:

CREATE	INDEX	`idx_username_email`	ON	`ecommerce`	(username,	email)

WHERE	docType	=	'user'

But	the	query	would	fail,	because	a		UnionScan		is	still	attempted,	it	is	just	two	scans	of	the	same	index.	It
would	need	to	be	rewritten	as	follows	for	the	same	index	to	use:

SELECT	userId,	pwd,	firstName,	lastName

FROM	ecommerce

WHERE	docType	=	'user'

		AND	(

				username	=	'johns'

				OR

				username	IS	NOT	MISSING	AND	email	=	'johns'

)

This	is	not	an	optimum	approach	either.	While	we	only	maintain	a	single	index	it	results	in	a		UnionScan	
and	the	range	on	the	first	index	key	is	scanned	completely.

N1QL	Tuning	Guide

38Couchbase	Professional	Services

Array	indexes	are	very	powerful	and	provide	optimized	execution	of	queries	when	array	elements	are	used,
something	that	is	not	possible	with	traditional	databases.	In	this	case,	our	data	is	not	an	array,	but	we	can
index	it	as	one	by	creating	a	functional	array.

CREATE	INDEX	idx_username_email_arr	ON	`ecommerce`	(

		DISTINCT	ARRAY	v

				FOR	v	IN	[LOWER(username),	LOWER(email)]

		END

)

WHERE	docType	=	'user'

SELECT	userId,	pwd,	firstName,	lastName

FROM	ecommerce

WHERE	docType	=	'user'

		AND	ANY	v	IN	[LOWER(username),	LOWER(email)]

				SATISFIES	v	=	'johns'

		END

The	explain	plan	verifies	that	only	a	single		DistinctScan		is	performed	against	our	index.	This	query
would	only	expect	a	single	result	but	is	performing	a	"FETCH"	as	the	fields		userId,	pwd,	firstName,
lastName		are	not	in	the	index.	If	we	wanted	to	squeeze	every	last	bit	of	performance	we	could	cover	the
query	with	the	index:

CREATE	INDEX	idx_username_email_arr_cvr	ON	`ecommerce`	(

		DISTINCT	ARRAY	v

				FOR	v	IN	[LOWER(username),	LOWER(email)]

		END,

		userId,	username,	pwd,	firstName,	lastName

)

WHERE	docType	=	'user'

Tip	19:	Favor	Equality	Predicates	over	Ranges

Equality	predicates	are	preferred	and	more	performant	than	range	scans,	as	a	range	is	bounded	by	a	low
and	high	value,	and	the	performance	of	the	scan	depends	on	how	wide	the	range	scan	is.	As	an	example,
almost	every	application	works	with	dates	in	some	form	or	fashion,	and	are	typically	stored	in	either	ISO-
8601	(i.e.	"2019-01-15T10:42:23Z")	or	Epoch	time	(i.e.	"1547548943000")	formats.	Consider	the	following
query	and	index	to	find	all	of	the	orders	on	a	specific	day:

CREATE	INDEX	idx_orderDate	ON	`ecommerce`	(orderDate)

WHERE	docType	=	"order"

SELECT	orderId,	orderDate,	orderTotal

N1QL	Tuning	Guide

39Couchbase	Professional	Services

https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/indexing-arrays.html
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Unix_time

FROM	ecommerce

WHERE	docType	=	"order"

	AND	orderDate	>=	"2019-01-15T00:00:00"

	AND	orderDate	<	"2019-01-16"

This	results	in	a	range	scan:

{

	"range":	[{

			"high":	"\"2019-01-16\"",

			"inclusion":	1,

			"low":	"\"2019-01-15T00:00:00\""

	}]

}

However,	if	we	create	a	functional	index	we	can	use	a	single	equality	predicate	i.e.		WHERE	orderDate	=
"2019-01-15"	

CREATE	INDEX	idx_orderDate_date	ON	`ecommerce`	(SPLIT(orderDate,	"T")[0])

WHERE	docType	=	"order"

SELECT	orderId,	orderDate,	orderTotal

FROM	ecommerce

WHERE	docType	=	"order"

	AND	SPLIT(orderDate,	"T")[0]	=	"2019-01-15"

Tip	20:	Implement	Index	Replication

Indexes	can	(and	should)	be	replicated	across	cluster-nodes.	This	ensures:

High	Availability	(failover):	If	one	Index-Service	node	is	lost,	the	other	continues	to	provide	access	to
replicated	indexes.
High	Performance:	If	original	and	replica	copies	are	available,	incoming	queries	are	load-balanced
automatically	across	them.	This	is	contrary	to	the	data	service,	where	document	replicas	are	"passive",
index	replicas	are	"active".

Prior	to	Couchbase	Server	5.0,	the	only	way	to	have	"replica"	indexes	was	to	have	the	same	index	definition,
but	with	a	different	name	and	manually	place	the	indexes	on	different	hosts.

CREATE	INDEX	productName_index1	ON	bucket_name(productName,	ProductID)

WHERE	type="product"

WITH	{	"nodes":	["host1"]	}

CREATE	INDEX	productName_index2	ON	bucket_name(productName,	ProductID)

WHERE	type="product"

N1QL	Tuning	Guide

40Couchbase	Professional	Services

https://docs.couchbase.com/server/6.0/learn/services-and-indexes/indexes/index-replication.html

WITH	{	"nodes":	["host2"]	}

As	Couchbase	Server	5.0+	index	replicas	are	specified	by	using	the		WITH		clause,	simply	specify	the
	num_replica		value.

CREATE	INDEX	productName_index1	ON	bucket_name(productName,	ProductID)

WHERE	type="product"

WITH	{	"num_replica":	2	};

The	only	requirement	is	that	the	number	of	nodes	in	the	cluster	running	the	Index	service	is	greater	than	or
equal	to		{num_replica}	+	1	.	Replicas	can	also	be	created	by	specifying	the	destination	nodes	of	the
index:

CREATE	INDEX	productName_index1	ON	bucket_name(productName,	ProductID)

WHERE	type="product"

WITH	{	"nodes":	["node1:8091",	"node2:8091",	"node3:8091"]	}

Additionally,	both		num_replica		and		nodes		can	be	specified	as	long	as		num_replica		is	equal	to
the	length	of	the		nodes		array	+	1.

CREATE	INDEX	productName_index1	ON	bucket_name(productName,	ProductID)

WHERE	type="product"

WITH	{	"num_replica":	2,	"nodes":	["node1:8091",	"node2:8091",	"node3:8091"]

	}

Whenever	a		CREATE	INDEX		statement	is	issued,	the	default	number	of	index	replicas	to	create	is		0	.
This	value	can	be	changed,	such	that	anytime	a		CREATE	INDEX		is	performed	there	is	no	need	to	specify
the	WITH	clause	and	replicas	will	be	created	automatically.

curl	\

		-u	Administrator:password	\

		-d	"{\"indexer.settings.num_replica\":	2	}"\

		http://localhost:9102/settings

Tip	21:	Defer	Index	Builds	to	share	DCP	stream

When	a		CREATE	INDEX		statement	is	issued,	each	document	in	the	keyspace	must	be	projected	against
the	index	and	by	default,	this	is	a	synchronous	operation.	Meaning	it	will	block	until	the	index	is	built	100%,	at
which	point	in	time	the	index	will	be	updated	asynchronously	by	any	future	mutations.	This	can	be
cumbersome	and	time-consuming,	especially	when	managing	many	indexes.

In	Couchbase,	there	can	only	be	one	index	build	process	going	on	at	a	time.	However,	that	does	not	mean
that	there	can	only	be	one	index	being	built	at	a	time.	N1QL	allows	you	to	define	the	index	but	defer	the
actual	building	of	the	index	to	a	later	point	in	time,	this	is	done	using	the		WITH	{	"defer_build":	true
}	.

N1QL	Tuning	Guide

41Couchbase	Professional	Services

https://docs.couchbase.com/server/6.0/analytics/3_query.html#With_clauses

CREATE	INDEX	`def_sourceairport`	ON	`travel-sample`(`sourceairport`)

WITH	{	"defer_build":true	}

CREATE	INDEX	`def_city_state`	ON	`travel-sample`(`city`,	`state`)

WITH	{	"defer_build":true	}

The	indexes	are	in	a	"Created"	state	and	not	eligible	to	be	used	until	they	are	built.	To	build	multiple	indexes
at	the	same	time	a	BUILD	INDEX	is	used.

BUILD	INDEX	ON	`travel-sample`	(def_sourceairport,	def_city_state)

The		BUILD	INDEX		is	asynchronous	by	default	and	has	the	primary	benefit	of	allowing	each	index	build	to
share	the	same	DCP	stream,	and	each	document	that	is	projected	for	the	index	build	only	has	to	be	retrieved
once	instead	of	once	per	index.

Tip	22:	Consider	the	Projection	Selectivity	of	the	Index

The	Data,	Index	and	Query	service	all	work	together	to	perform	N1QL	queries	and	manage	indexes.	While
the	bulk	of	index	processing	resides	with	the	Index	Service,	there	are	two	components	of	indexing	that
actually	reside	within	the	Data	Service.	These	are	the	"Projector"	and	"Router"	processes,	which	are
responsible	for	projecting	every	data	mutation	against	each	index	on	the	bucket	and	communicating	those
mutations	to	the	"Supervisor"	process	on	the	Index	Service.

This	is	roughly	the	#	of	documents	that	would	qualify	for	the	index	divided	by	the	total	#	of	documents	in	the
bucket.

For	example,	a	bucket	with		1,000,000		documents,	and		100		of	those	documents	were	"config"
documents,	if	we	created	an	index	with	the	predicate	of		WHERE	docType	=	"config"		the	Projection
Selectivity	is	0.10%.	Conversely,	if	you	created	an	index	on	just		docType		for	example	and	every

N1QL	Tuning	Guide

42Couchbase	Professional	Services

https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/build-index.html
https://docs.couchbase.com/server/6.0/learn/services-and-indexes/services/index-service.html

document	in	the	bucket	has		docType		the	Projection	Selectivity	is	100%.

Both	of	these	are	on	the	extreme	ends	of	the	spectrum,	the	first	will	only	satisfy	projection	0.10%	of	the	time
and	there	would	be	many	wasted	CPU	cycles	on	unnecessary	projection	and	you	may	want	to	consider	an
alternative	access	pattern.	Additionally,	having	a	Projection	Selectivity	of	100%	is	also	not	performant	as
every	mutation	meets	projection	and	results	in	an	update	to	the	index.	There	is	not	a	set	number,	as	it	will	be
specific	to	each	data	set,	but	understand	the	implications	of	unnecessary	projection.

Tip	23:	Combine	Multiples	Scans	Using		CASE		Expressions

Often,	it	is	necessary	to	calculate	different	aggregates	on	various	sets	of	documents.	Usually,	you	achieve
this	goal	with	multiple	scans	on	the	data,	but	it	is	easy	to	calculate	all	the	aggregates	with	a	single	scan.
Eliminating	n-1	scans	can	greatly	improve	performance.

You	can	combine	multiple	scans	into	one	scan	by	moving	the		WHERE		condition	of	each	scan	into	a	CASE
expression,	which	filters	the	data	for	the	aggregation.	For	each	aggregation,	there	could	be	another	field	that
retrieves	the	data.

The	following	example	asks	for	the	hotels	which	have	free	internet	or	free	breakfast	or	free	parking.	You	can
obtain	this	result	by	executing	three	separate	queries:

SELECT	COUNT(*)	FROM	`travel-sample`	WHERE	type="hotel"	and	free_internet=tr

ue

SELECT	COUNT(*)	FROM	`travel-sample`	WHERE	type="hotel"	and	free_breakfast=t

rue

SELECT	COUNT(*)	FROM	`travel-sample`	WHERE	type="hotel"	and	free_parking=true

Total	time	=	119.23	+	121.63	+	118.71	=	359.57ms

However,	it	is	more	efficient	to	run	the	entire	query	in	a	single	statement.	Each	number	is	calculated	as	one
field.	The	count	uses	a	filter	with	the		CASE		expression	to	count	only	the	rows	where	the	condition	is	valid.
For	example:

SELECT	COUNT(CASE	WHEN	free_internet=true	THEN	1	ELSE	null	END)	cnt_free_int

ernet,

		COUNT(CASE	WHEN	free_breakfast=true	THEN	1	ELSE	null	END)	cnt_free_breakfa

st,

		COUNT(CASE	WHEN	free_parking=true	THEN	1	ELSE	null	END)	cnt_free_parking

FROM	`travel-sample`

WHERE	type="hotel"

The	query	takes	250	ms,	shaving	off	an	entire	100ms	off	the	total	time	taken,	not	to	mention	the	network
calls,	processing	etc.	that	it	would	take	while	querying	it	from	the	application	side.

This	is	a	very	simple	example,	larger	datasets	will	show	larger	variances.	There	could	be	ranges	involved,
the	aggregation	functions	could	be	different,	etc.

N1QL	Tuning	Guide

43Couchbase	Professional	Services

Tip	24:	Make	your	Documents	Index	Friendly

Different	access	paths	can	determine	the	optimum	structure	of	your	documents.	When	you	are	leveraging
N1QL,	you	will	want	to	ensure	your	documents	are	"index	friendly".	Ensure	all	documents	have	a	consistent
	docType		(or	equivalent)	attribute.	This	allows	for	efficient	filtering	during	indexing,	querying	or	both.

{

				"docType":	"user",

				...

}

If	you're	performing	some	processing	on	an	array	in	the	document,	instead	of	performing	that	processing	in
the	query	consider	storing	a	pre-computed	value	in	another	attribute	(e.g.	total,	average,	score,	etc.)

{

				...

				"scores":	[

								78,

								97,

								23,

								...,

								43

],

				"scoreTotal":	2392,

				"scoreAvg":	77.6,

				"scoreMin":	23,

				"scoreMax":	99

}

If	an	attribute	name	is	dynamic	or	unknown,	it's	OK	for	KV	access	but	not	practical	from	an	indexing
standpoint.	Below	the	first	example	is	simply	not	practical	to	index	or	search	if	that	object	had	every	single
language	listed	in	there,	you	would	need	one	index	per	language.

Bad	for	Index/Querying:

{

				"Greetings":	{

								"English":	"Good	Morning",

								"Spanish":	"Buenos	días",

								"German":	"Guten	Morgen",

								"French":	"Bonjour"

				}

}

Good	for	Index/Querying:

N1QL	Tuning	Guide

44Couchbase	Professional	Services

{

				"Greetings":	[{

												"Language":	"English",

												"Greeting":	"Good	Morning"

								},

								{

												"Language":	"Spanish",

												"Greeting":	"Buenos	días"

								},

								{

												"Language":	"German",

												"Greeting":	"Guten	Morgen"

								},	{

												"Language":	"French",

												"Greeting":	"Bonjour"

								}

]

}

Tip	25:	USE	INFER	to	understand	your	dataset

Couchbase	buckets	are	a	logical	namespace	made	up	of	one	or	more	types	of	documents/models.
Understanding	these	models	and	their	underlying	structures	can	provide	additional	opportunities	for
performance	and	tuning.	N1QL	supports	the	INFER	statement,	that	is	statistical	in	nature.	It	analyzes	a
bucket	through	sampling	and	returns	results	in	JSON	Schema	format.

INFER	`travel-sample`	WITH	{

		"sample_size":	1000,

		"num_sample_values":	5,

		"similarity_metric":	0.6

}

For	each	identified	attribute,	the	statement	returns	the	following	details:

Attribute Description

#docs Specifies	the	number	of	documents	in	the	sample	that	contain	this	attribute.

%docs Specifies	the	percentage	of	documents	in	the	sample	that	contain	this	attribute.

minitems If	the	data	type	is	an	array,	specifies	the	minimum	number	of	elements	(array	size).

maxitems If	the	data	type	is	an	array,	specifies	the	maximum	number	of	elements	(array	size).

samples Displays	a	list	of	sample	values	for	the	attribute	found	in	the	sample	population.

type Specifies	the	identified	data	type	of	the	attribute.

Tip	26:	META()	properties	such	as	CAS	and	Expiration	can	be	Indexed

N1QL	Tuning	Guide

45Couchbase	Professional	Services

https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/infer.html
http://json-schema.org/documentation.html

CAS	or	Compare-and-Swap	values	are	used	as	a	form	of	optimistic	locking	for	document	mutations.	The
CAS	value	can	be	returned	from	a	N1QL	query	by	calling	the		META()		function	and	referencing	the
	META().cas		value.

If	you	are	leveraging	CAS	operations	and	attempting	to	cover	your	queries,	this	value	will	need	to	be	added
to	the	index.

Tip	27:	Beware	of	the	Scan	Consistency	Level

N1QL	indexes	are	updated	asynchronously	after	a	mutation	has	occurred	on	the	data	service.	While	key-
value	operations	against	the	data	service	are	strongly	consistent,	and	while	index	updates	are	extremely	fast
(usually	<1ms),	because	of	the	asynchronous	nature	they	are	"eventually	consistent".

N1QL	allows	you	to	specify	the	Scan	Consistency	level	to	use	for	a	query.	There	are	three	possible	values:

Not	Bounded:	Is	the	default	and	the	fastest.	It	says	to	return	the	results	that	are	currently	in	the	index,
regardless	or	not	if	there	are	items	in	the	queue	waiting	to	be	indexed.
Request	Plus:	Is	the	opposite	and	slowest	of	the	scan	levels.	At	query	time	it	will	wait	for	all	indexes	to
catch	up	to	their	highest	sequence	numbers.	The	benefit	of	this	slower	scan	level	is	it	allows	you	to
Read	Your	Own	Write	(RYOW)	but	could	take	some	time	if	the	system	is	under	heavy	write	load.
Statement	Plus	/	At	Plus:	Is	unique	compared	to	the	other	two	scan	levels	and	requires
	mutationTokens		to	be	enabled	before	it	can	be	used.	This	causes	a	few	extra	bytes	of	information
to	be	sent	back	to	the	SDK	whenever	a	mutation	occurs.	The	mutation	tokens	are	then	passed	to	the
N1QL	query	and	the	query	will	wait	for	at	least	those	tokens	to	be	indexed	prior	to	proceeding.

//	enable	mutation	tokens

CouchbaseEnvironment	env	=	DefaultCouchbaseEnvironment

				.builder()

				.mutationTokensEnabled(true)

				.build();

//	mutate	a	document	and	save	the	mutation

JsonDocument	written	=	bucket.upsert(JsonDocument.create("mydoc",	JsonObject

.empty()));

//	written.mutationToken()	==

//		"mt{vbID=55,	vbUUID=166779084590420,	seqno=488,	bucket=travel-sample}"

//	pass	the	mutation	to	the	query

bucket.query(

				N1qlQuery.simple("select	count(*)	as	cnt	from	`travel-sample`",

				N1qlParams.build().consistentWith(written))

);

There	is	a	price	to	pay	for	using	a	query	scan	consistency	such	as	Request+	or	Statement+.	See	if	you	can
achieve	the	desired	result	by	key-value	Access,	especially	if	it's	a	single	document	or	a	handful	of	documents
which	can	be	obtained	via	a	multi-get.

Tip	28:	Use	IN	instead	of	WITHIN

N1QL	Tuning	Guide

46Couchbase	Professional	Services

https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/indexing-meta-info.html#meta-code-class-var-keyspace_expr-code-code-class-var-property-code
https://docs.couchbase.com/server/5.1/concepts/data-management.html#strong-consistency-and-durability
https://docs.couchbase.com/java-sdk/2.7/scan-consistency-examples.html

The	IN	operator	specifies	the	search	depth	to	only	include	the	current-level	of	the	array	on	which	it	is
operating	against.	Whereas	the	WITHIN	operator	specifies	the	search	depth	to	include	the	current	level	of
the	array	it's	operating	on	and	all	of	the	children	and	descendant	arrays	indefinitely.

The	use	of		WITHIN		can	have	unexpected	performance	consequences	if	used	incorrectly,	by	recursively
iterating	through	all	arrays	of	a	given	property.

Tip	29:	Cancel	Long	Running	or	Problematic	Requests

Active	N1QL	requests	are	stored	in	the		system:active_requests		catalog,	if	the	result	of	the	query	is
greater	than		1s		it	will	be	stored	in	the		system:completed_requests		catalog,	otherwise	it	is
discarded.	If	you	need	to	cancel	any	active	requests,	you	can	issue	a		DELETE		statement	against	the
	system:active_requests		keyspace	effectively	canceling	the	query.

DELETE

FROM	system:active_request

WHERE	requestId	=	"..."

Tip	30:	Cleanup	system:completed_requests

The		system:completed_requests		is	extremely	useful	with	identifying	slow	performing	and	resource
intensive	queries.	As	you	continue	to	iterate	through	each	of	the	queries	and	optimize	them,	you	no	longer
want	to	see	that	same	query	in		system:completed_requests	.	You	can	delete	records	from	the
	system:completed_requests		catalog,	just	as	you	would	with	any	other	keyspace.

DELETE

FROM	system:completed_requests

WHERE	requestId	=	"..."

DELETE

FROM	system:completed_requests

WHERE	statement	=	"SELECT	DISTINCT	type\nFROM	`travel-sample`"

Tip	31:	Initially	Design	Queries	/	Indexes	on	an	Empty	Bucket

Designing,	building	and	iterating	on	indexes	against	a	bucket	with	a	large	number	of	documents	can	be	time-
consuming.	When	initially	designing	queries	and	indexes,	if	possible,	execute	them	against	an	empty	bucket
until	you're	satisfied	with	the	explain	plan.

Tip	32:	Remove	Unused	Indexes

Proactive	monitoring	is	critical	to	any	application,	not	only	should	you	be	actively	monitoring	indexes	and
their	usage	to	identify	potential	growth	needs,	you	should	also	be	monitoring	and	identifying	indexes	which
are	not	used	and	can	be	dropped.

Tip	33:	Set	clientContextID	option	in	the	SDK

N1QL	Tuning	Guide

47Couchbase	Professional	Services

https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/collectionops.html#collection-op-in
https://docs.couchbase.com/server/6.0/n1ql/n1ql-language-reference/collectionops.html#collection-op-within

The		clientContextID		is	a	user-defined	identifier	query	option	that	can	be	sent	to	the	query	service
from	the	SDK.	This	is	not	used	by	Couchbase	for	anything,	however,	it	is	stored	in	the
	system:active_requests		and		system:completed_requests	.	This	can	be	a	true	application
requestId/genesisId	generated	by	the	application,	or	some	type	of	application	identifier	that	can	be	later	used
for	debugging	or	tracking	down	specific	queries	related	to	a	given	application	or	request.

Appendix:	Operators

#operator Usage Description

PrimaryScan Scan Scans	a	primary	index	v1	(Pre	CB	5.50)

PrimaryScan3 Scan Scans	a	primary	index	v2	(CB	5.50+)

ParentScan Scan Used	for		UNNEST	.	Treats	the	parent
object	as	the	result	of	a	scan.

IndexScan Scan Scans	a	secondary	index	v1	(CB	pre	5.0)

IndexScan2 Scan Scans	a	secondary	index	v2	(CB	5.0)

IndexScan3 Scan Scans	a	secondary	index	v3	(CB	5.50+)

KeyScan Scan Does	not	perform	a	scan.	Directly	treats
the	provided	keys	as	a	scan.

ValueScan Scan

Used	for	the	VALUES	clause	of
	INSERT		and		UPSERT		statements.
Treats	the	provided	values	as	the	result	of
a	scan.

DummyScan Scan
Used	for		SELECT	s	with	no		FROM	
clause.	Provides	a	single	empty	object	as
the	result	of	a	scan.

CountScan Scan

Used	when	the	query	has	no	predicate	i.e.
	SELECT	COUNT(*)	FROM	bucket-

name	.	Treats	the	bucket	size	as	the
result	of	a	scan,	without	actually
performing	a	full	scan	of	the	bucket.

IndexCountScan

Used	when	the	query	has
predicates	and	the
predicate	can	be	pushed
to	the	indexer.	Count	is
performed	by	Indexer.	(v1
Pre	CB	5.0)

IndexCountScan2 Scan

Used	when	the	query	has	predicates	and
the	predicate	can	be	pushed	to	the
indexer.	Count	is	performed	by	Indexer.
(v2	CB	5.0)

IndexCountDistinctScan2 Scan

Used	when	the	query	has	predicates	and
the	predicate	can	be	pushed	to	the
indexer.	Count	of	Distinct	values	is
performed	by	Indexer.	(v2	CB	5.0)

IntersectScan Scan

A	container	that	scans	its	child	scanners
and	intersects	the	results.	Used	for
scanning	multiple	secondary	indexes

N1QL	Tuning	Guide

48Couchbase	Professional	Services

https://docs.couchbase.com/java-sdk/2.7/n1ql-queries-with-sdk.html

concurrently	for	a	single	query.	Intersect	of
document	keys	are	done

OrderedIntersectScan Scan

Same	as	IntersectScan,	First	scan	in	the
order	is	maintained	(First	Scan	Index
order	is	exposed	becaue	it	matches	query
	ORDER	BY)

UnionScan Scan
	OR		predicate	can	use	multiple	indexes.
Each	Index	perform	IndexScan	document
keys	are	merged	as		UNION	

DistinctScan Scan

Eliminates	Duplicate	document	keys
(Indexer	can	produce	duplicate	document
keys.	Array	Indexing,	Overlap		OR	
clauses)

ExpressionScan Scan

Source	(FROM		clause)	is	not	a	key
space.	It	is	Expression.	Expression	Scan
will	be	performed	from	the	in	memory
data.

Fetch Fetch Obtain	documents	from	the	data	service
based	on	a	key

DummyFetch Fetch No	Fetch	Operations	performed.	Act	like
dummy	fetch

Join Join
Used	for	Look-up	Join.		a	JOIN	b	ON
KEYS	

IndexJoin Join
Used	for	Index	Join.		a	JOIN	b	ON	KEY
b.xxx	FOR	a	

NestedLoopJoin Join

ANSI	JOIN	(a	JOIN	b	ON	a.xx	=
b.yy).	The	Join	is	performed	nested
loop	every	row	of	a,	index	scan/fetch	is
performed	on	b

HashJoin Join

ANSI	JOIN	(a	JOIN	b	ON	a.xx	=
b.yy).	The	Join	is	performed	Hash
JOIN,	In	memory	hash	table	will	be
constructed	on	a	or	b.	Then	a	or	b
scanned/fetched	and	look	up	done	in
memory	hash	table

Nest Join

Join	operation	between	a	parent	and	a
child	with	a	nested	array	where	parent	is
repeated	for	each	child	array	item.	Same
as	Join	(a	NEST	b	ON	KEYS	a.xxx)

IndexNest Join
Same	as	Index	JOIN	(a	NEST	b	ON
KEY	b.xxx	FOR	a)

NestedLoopNest Join
Same	as	Nested	LOOP	JOIN	(a	NETST
b	ON	a.xx	=	b.yy)

HashNest Join
Same	as	Hash	JOIN	(a	NEST	b	ON
a.xx	=	b.yy)

Grouping	operation	between	a	parent	and

N1QL	Tuning	Guide

49Couchbase	Professional	Services

Unnest Join a	child	array	where	child	array	is
embedded	into	the	parent.

Let Let	+	Letting Let	and	Letting	varaibles	evaluation

InferKeyspace Infer INFER	statement

Filter Filter
Apply	a	filter	expression	e.g.		WHERE	X=
<value>	

InitialGroup Group Initial	phase.	(Can	be	executed	in	parallel
with	IntermediateGroup)

IntermediateGroup Group Cumulate	intermediate	results.	This	phase
can	be	chained.

FinalGroup Group Compute	final	aggregate	results.

InitialProject Project Reduce	the	stream	size	to	the	fields
involved	in	the	query	processing

FinalProject Project Final	Shaping	of	the	result	into	the	JSON
for	the	requested	fields

IndexCountProject Project Project	the	output	of	IndexCountScan/2
IndexCountDistinctScan2	operators

Distinct Distinct Indicates	that	duplicates	are	being	filtered
from	the	result.

UnionAll Set	Operator
Combine	the	results	of	two	queries.	For
	UNION	,	we	perform		UNION	ALL	
followed	by	DISTINCT.

IntersectAll Set	Operator Intesect	the	all	of	the	result	objects

ExceptAll Set	Operator
Except	all	of	the	result	objects	(i.e
Present	on	LEFT	side	query	but	not
present	on	right	side	query)

Order Order Orders	the	results	based	on	1	or	more
keys	ASC	or	DESC

Offset Paging Start	returning	items	from	a	specified	item
count

Limit Paging Limit	the	number	of	items	returned	to	N

SendInsert Insert When	an	insert	statement	is	explained

SendUpsert Upsert When	an	upsert	statement	is	explained

SendDelete Delete When	an	delete	statement	is	explained

Clone Update
Used	for	UPDATE.	Clones	data	values	so
that	UPDATEs	read	original	values	and
mutate	a	clone.

Set Update Used	for	UPDATE

Unset Update Used	for	UPDATE

SendUpdate Update When	an	update	statement	is	explained

Merge Merge Merge	Statement

Alias Framework Alias	of	Keyspace

N1QL	Tuning	Guide

50Couchbase	Professional	Services

Authorize Framework Privilege	validation	(i.e	permission	RBAC
validation	on	all	objects	in	the	query)

Parallel Framework
A	container	that	executes	multiple	copies
of	its	child	operator	in	parallel.	Used	for	all
data-parallelism.

Sequence Framework
A	container	that	chains	its	children	into	a
sequence.	Used	for	all	execution
pipelining.

Discard Framework Discard	results

Stream Framework Stream	results	out.	Used	for	returning
results.

Collect Framework Collect	results	into	an	array.	Used	for
subqueries.

CreatePrimaryIndex Index	DDL When	a		Create	PRIMARY	INDEX	
statement	is	explained

CreateIndex Index	DDL When	a		CREATE	INDEX		statement	is
explained

DropIndex Index	DDL When	a		DROP	INDEX		statement	is
explained

AlterIndex Index	DDL When	a		ALTER	INDEX		statement	is
explained

BuildIndexes Index	DDL When	a		BUILD	INDEX		statement	is
explained

GrantRole Roles GRANT	statement

RevokeRole Roles Revoke	Statement

Explain Explain EXPLAIN	statement

Prepare Prepare Prepare	Statement

Resources
N1QL:	A	Practical	Guide	(2nd	Edition)
A	Guide	to	N1QL	in	Couchbase	5.5
Index	Scans
N1QL	Monitoring
Deep	Dive	into	Couchbase	N1QL	Query	Optimization
Optimize	N1QL	Performance	using	Request	Profiling
Grouping	and	Aggregation	in	Couchbase
Nitro:	A	Fast,	Scalable	In-Memory	Storage	Engine	for	NoSQL	Global	Secondary	Index
Query	Tutorial
Couchbase	Training	Online	-	N1QL

N1QL	Tuning	Guide

51Couchbase	Professional	Services

https://blog.couchbase.com/wp-content/uploads/2017/10/N1QL-A-Practical-Guide-2nd-Edition.pdf
https://blog.couchbase.com/wp-content/uploads/2018/04/COU_261-Couchbase-5.5-N1QL-Booklet-WEB.pdf
https://docs.couchbase.com/server/6.0/learn/services-and-indexes/indexes/index-scans.html
https://docs.couchbase.com/server/6.0/manage/monitor/monitoring-n1ql-query.html
https://dzone.com/articles/a-deep-dive-into-couchbase-n1ql-query-optimization
https://blog.couchbase.com/optimize-n1ql-performance-using-request-profiling/
https://blog.couchbase.com/understanding-index-grouping-aggregation-couchbase-n1ql-query/
http://www.vldb.org/pvldb/vol9/p1413-lakshman.pdf
https://query-tutorial.couchbase.com/tutorial/#8
https://training.couchbase.com/online

N1QL	Tuning	Guide

52Couchbase	Professional	Services

	Notice and Disclaimer
	N1QL Tuning Guide

