

Notice	and	Disclaimer

The	recommendations,	best	practice	guides,	tuning	examples	(together	"Best	Practices")	as	well	as	sample
code,	scripts	(together	"Sample	Code",	collectively	with	the	Best	Practices	is	"Content")	contained	herein	are
the	property	of	Couchbase,	Inc.	("Couchbase")	and	are	provided	for	illustrative	and	instructional	purposes
only.	The	user	of	the	Content	acknowledges	and	accepts	that	the	Content	is	not	supported	by	any	license
agreement	between	Couchbase	and	the	user.

The	Content	may	not	be	reproduced,	disseminated,	sold,	sub-licensed,	assigned,	rented	leased,	distributed
or	otherwise	published,	in	whole	or	in	part	without	prior	written	permission	from	Couchbase.

The	user	of	the	Source	Code	assumes	the	entire	risk	of	any	use	it	may	make	or	permit	to	be	made	of	the
Source	Code	and	is	solely	responsible	for	adequate	protection	and	backup	of	its	data.	Couchbase	reserves
the	right	to	make	changes	to	the	Source	Code	or	Best	Practices	at	any	time	without	prior	notice.	ALWAYS
thoroughly	evaluate	Sample	Code	using	test	data	to	ensure	proper	operation	and	confirm	the	Sample	Code
causes	no	adverse	effects	prior	to	use	on	live	or	production	data.

Couchbase	hereby	reserves	all	rights	in	the	Content	under	the	copyright	laws	of	the	United	States	and
applicable	international	laws,	treaties,	and	conventions.

THE	CONTENT	HEREIN	IS	PROVIDED	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,
INCLUDING	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR
PURPOSE	ARE	DISCLAIMED.	WITHOUT	LIMITING	ANY	OF	THE	FOREGOING	AND	TO	THE	MAXIMUM
EXTENT	PERMITTED	BY	APPLICABLE	LAW,	IN	NO	EVENT	SHALL	Couchbase	OR	ITS	CONTRIBUTORS
BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR
SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	SUSTAINED	BY	YOU
OR	A	THIRD	PARTY,	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THE	CONTENT,
EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.	The	foregoing	shall	not	exclude	or	limit	any
liability	that	may	not	by	applicable	law	be	excluded	or	limited.

Use	of	or	access	to	Couchbase	products	or	services	requires	a	separate	license	from	Couchbase.

Notice	and	Disclaimer

3Couchbase	Professional	Services

Document	Management	Strategies

JSON	provides	a	flexible	data	model,	which	can	support	an	infinite	number	of	schemas,	as	the	schema	is
explicitly	stored	alongside	every	value.	Every	application	evolves	over	time,	schemas	change,	new	models
are	defined.	It	is	important	to	have	a	plan	for	managing	and	adapting	these	changes	into	your	data	model
and	applications	smoothly,	this	document	is	intended	to	explain	best	practices	and	conceptual
implementations	of	how	this	might	work.

Note:	All	code	examples	included	are	in	pseudo-code.	They	are	provided	to	relay	the	logical	concept
only.	The	conceptual	high-level	logic	and	JSON	properties	should	be	adapted	to	your	organizational
coding	standards	and	programming	language.

Standardized	Document	Properties
Document	Optimizations
Embedded	vs.	Non-Embedded	Data
Schema	Versioning
Document	Revisions

Standardized	Document	Properties
Multiple	data	sets	are	expected	to	share	a	common	bucket	in	Couchbase.	To	ensure	each	data	set	has	an
isolated	keyspace,	it	is	a	best	practice	to	include	a	type/class/use-case/sub-domain	prefix	in	all	document
keys.	As	an	example	of	a	User	Model,	you	might	have	a	property	called		"userId":	123	,	the	document
key	might	look	like		user:123	,		user_123	,	or		user::123	.	Every	Document	ID	is	a	combination	of
two	or	more	parts/values,	that	should	be	delimited	by	a	character	such	as	a	colon	or	an	underscore.	Pick	a
delimiter,	and	be	consistent	throughout	your	enterprise.

Just	as	each	Document	ID	should	contain	a	prefix	of	the	type/model,	it	is	also	a	best	practice	to	include	that
same	value	in	the	body	of	the	document.	This	allows	for	efficient	filtering	by	document	type	at	query	time	or
filtered	XDCR	replications.	This	property	can	be	named	many	different	names:		type	,		docType	,
	_type	,	and		_class		are	all	common	choices,	choose	one	that	fits	your	organization's	standards.

{

		"_type":	"user",

		"userId":	123

}

Note:	There	is	not	a	right	or	wrong	property	name,	however,	if	you're	application	will	leverage
Couchbase	Mobile	(in	particular	Sync-Gateway),	the	use	of	a	leading	underscore	should	be	avoided,
as	any	document	that	contains	root	level	properties	with	a	leading	underscore	will	fail	to	replicate.	This
is	not	a	bug,	and	it	meant	to	facilitate	backward	compatibility	with	v1.0	of	the	replication	protocol.

Applications	are	typically	versioned	using	Semantic	Versioning,	i.e.	2.5.1.	Where	2	is	the	major	version,	5	is
the	minor	version	and	1	is	bugfix/maintenance	version.	Versioning	the	application	informs	users	of	features,
functionality,	updates,	etc.	The	term	"schemaless",	is	often	associated	with	NoSQL,	while	this	is	technically
correct,	it	is	better	stated	as:

Document	Management	Strategies

4Couchbase	Professional	Services

https://semver.org

"There	is	no	schema	managed	by	the	database,	however,	there	is	still	a	schema,	and	it	is	an
"Application	Enforced	Schema."	The	application	is	now	responsible	for	enforcing	the	schema	as	well	as
maintaining	the	integrity	of	the	data	and	relationships.

As	schemas	change	and	evolve,	documenting	the	version	provides	a	mechanism	of	notifying	applications
about	the	schema	version	of	the	document	that	they're	working	with.	This	also	enables	a	migration	path	for
updating	models	which	is	discussed	further	in	the	Schema	Versioning	section.

{

		"_type":	"user",

		"_schema":	"1.2",

		"userId":	123

}

At	a	minimum,	every	JSON	document	should	contain	a	type	and	version	property.	Depending	on	your
application	requirements,	use	case,	the	line	of	business,	etc.	other	common	properties	to	consider	at:

	_created		-	A	timestamp	of	when	the	document	was	created	in	epoch	time	(milliseconds	or	seconds
if	millisecond	precision	is	not	required)
	_createdBy		-	A	user	ID/name	of	the	person	or	application	that	created	the	document
	_modified		-	A	timestamp	of	when	the	document	was	last	modified	in	epoch	time	(milliseconds	or
seconds	if	millisecond	precision	is	not	required)
	_modifiedBy		-	A	user	ID/name	of	the	person	or	application	that	modified	the	document
	_accessed		-	A	timestamp	of	when	the	document	was	last	accessed	in	epoch	time	(milliseconds	or
seconds	if	millisecond	precision	is	not	required)
	_geo		-	A	2	character	ISO	code	of	a	country

The	use	of	a	leading		_		creates	a	standardized	approach	to	global	attributes	across	all	documents	within
the	enterprise.

{

		"_type":	"user",

		"_schema":	"1.2",

		"_created":	1544734688923

		"userId":	123

}

The	same	can	be	applied	through	a	top-level	property	i.e.		"meta":	{}	.

{

		"meta":	{

				"type":	"user",

				"schema":	"1.2",

				"created":	1544734688923

		},

		"userId":	123

}

Document	Management	Strategies

5Couchbase	Professional	Services

Choose	an	approach	that	works	within	your	organization	and	be	consistent	throughout	your	applications.

Document	Optimizations
JSON	gives	us	a	flexible	schema,	that	allows	our	models	to	rapidly	adapt	to	change,	this	is	because	the
schema	is	explicitly	stored	alongside	each	value.	Whereas,	in	an	RDBMS	the	schema	is	defined	by	the	table
columns,	which	are	defined	once.	In	any	database,	every	byte	of	stored	data	adds	up,	historically	this	has
been	abstracted	from	developers	as	the	schema	and	the	database	are	managed	by	a	DBA.	With	an
application	enforced	schema,	the	model	size	is	now	controlled	by	the	application.	As	developers	we	tend	to
be	overly	verbose	when	describing	variables	throughout	our	applications,	this	practice	tends	to	carry	over	to
our	JSON	models.	While	it	is	generally	preferred	to	maintain	human-readable	field	names	for	developer
productivity,	there	are	often	well-understood	abbreviations	for	many	fields	that	will	not	reduce	document
readability.

As	a	general	approach,	consider	the	following	options	to	proactively	reduce	document	sizes:

Don't	store	the	document	ID	as	a	repeated	value	in	the	document
Convert	ISO-8601	timestamps	to	epoch	time	in	milliseconds,	saving	at	least	11	bytes.	When	millisecond
precision	is	not	required,	convert	to	a	smaller	value	(i.e.	divide	by	1000	to	convert	to	seconds,	60	for
minutes,	60	for	hours,	24	for	days),	saving	at	least	4	bytes
Store	dates	as	an	ISO	format		YYYY-MM-DD		instead	of		MMM	DD,	YYYY	
When	using	GUID's	strip	all	dashes	saving	an	additional	4	bytes	per	GUID
Use	shorter	property	names
Don't	store	properties	whose	value	is		null		,	empty		String|Array|Object	,	or	a	known	default
Don't	repeat	values	in	arrays	whose	value	is	not	unique,	use	a	top-level	property	on	the	document

Storing	Dates

It	is	very	common	in	almost	any	application,	there	is	a	need	to	store	a	date.	This	could	be	when	the
document	was	created,	modified,	when	an	order	was	placed,	etc.	Generally,	this	date	is	stored	in	ISO-8601
format.

Take	the	date		2018-12-14T03:45:24.478Z		as	an	example,	this	is	very	readable,	but	is	it	the	most
efficient	way	to	store	the	date?	Storing	this	same	date	as	Unix	Epoch	Time	we	can	represent	this	same	date
as		1544759124478	.	ISO-8601	is	24	bytes,	where	epoch	format	is	13	bytes,	this	saves	11	bytes.	This
might	not	seem	like	a	lot,	but	consider	this	scenario:	500,000,000	documents	and	each	document	has	an
average	of	2	date	properties.	If	we	used	epoch	format,	we'd	save	11,000,000,000	bytes	or	11Gb	of	space.

Now,	take	this	a	step	further	and	ask	the	question,	"What	level	of	precision	does	the	application	require?".
Often	times	we	do	not	need	millisecond	precision,	we	can	divide	the	epoch	date	accordingly	for	seconds,
minutes,	hours,	etc.

Epoch	Date Precision Reduction Output Length	/
Bytes

1544759124478 milliseconds 	n/a	 1544759124478 13

1544759124478 seconds 	/	1000	 1544759124 10

1544759124478 minutes 	/1000	/	60	 25745985 8

Document	Management	Strategies

6Couchbase	Professional	Services

https://www.iso.org/iso-8601-date-and-time-format.html
https://en.wikipedia.org/wiki/Unix_time

1544759124478 hours 	/1000	/	60	/	60	 429099 6

1544759124478 days
	/1000	/	60	/	60	/

24	
17879 5

Embedded	vs.	Non-Embedded	Data
Typically	denormalized	document	models	provide	better	read	performance

Embed	when	there	are:

Relationship	between	entities
One-to-few	relationships	between	entities
Embedded	data	that	will	not	grow	unbounded
Embedded	data	that	is	integral	to	data	in	a	document

Do	not	embed	and	normalize	when	there	are:

Unbounded	data/arrays
Frequent	change	of	data	across	models
Unrelated	models
One-to-many	relationships
Many-to-many	relationships
Frequent	changes	to	related	data
Referenced	data	could	be	unbounded
Smaller	mutations	are	required	for	replication/network	performance

Schema	Versioning
Storing	the	schema	version	within	the	document	is	a	best	practice	that	provides	a	mechanism	to	migrate	and
upgrade	models	as	they	change	over	time.	For	this	example,	the	pseudo-code	provided	is	intended	to
illustrate	an	approach	to	schema	management	through	code.	There	are	many	different	ways	to	solve	this
problem,	think	of	this	exercise	as	things	to	consider	during	development,	not	necessarily	how	it	is	coded.

Document	ID:	user:123

Document	Body:

{		

		"_type":"user",		

		"_schema":	"1.0",		

		"_created":	1544759124,

		"userId":	123,		

		"name":	"Joe	Smith",

		"phone":	"1234567890",

		"email":	"joe.smith@acme.com"

Document	Management	Strategies

7Couchbase	Professional	Services

}

The	easiest	approach	to	begin	managing	documents	is	to	use	a	Class	to	represent	a	Document,	this	should
be	a	1:1	relationship.	Funneling	all	operations	at	the	document	level	to	a	single	class	enables	you	to	make
rapid	changes,	whereas	if	changes	to	the	document	are	allowed	throughout	the	codebase	any	schema
changes	will	subsequently	require	more	code	modifications	and	testing.

public	class	User	{

		var	_type:	string

		var	_schema:	numeric

		var	_created:	datetime

		var	_modified:	datetime

		var	userId:	integer

		var	name:	string

		var	phone:	string

		var	email:	string

}

Next,	we	need	to	add	the	constructor

public	class	User	{

		var	_type:	string

		var	_schema:	numeric

		var	_created:	datetime

		var	_modified:	datetime

		var	userId:	integer

		var	name:	string

		var	phone:	string

		var	email:	string

		constructor	(doc)	{

				this._type	=	doc._type

				this._schema	=	doc._schema

				this._created	=	doc._created

				this._modified	=	doc._modified

				this.userId	=	doc.userId

				this.name	=	doc.name

				this.phone	=	doc.phone

				this.email	=	doc.email

		}

}

Now	that	the	user	class	is	defined,	it	can	start	to	be	used	and	it's	instance	properties	referenced	directly,	for
example:

Document	Management	Strategies

8Couchbase	Professional	Services

user	=	new	User(...)	//	create	a	new	instance	of	User

print(user.phone)	//	output	the	users	phone

user.phone	=	"111-222-3333"	//	update	the	users	phone	number

To	control	our	schema,	and	how	it	is	consumed	throughout	the	application,	direct	references	should	not	be
allowed,	instead,	the	values	exposed	from	the	document	are	better	served	through	accessors	(i.e.	getters
and	setters).	The	use	of	accessors	is	highly	beneficial,	as	a	method	is	used	to	access	the	value	or	modify	the
value.	The	method	can	apply	business	rules	and	can	be	changed	without	impacting	existing	consumers.

public	class	User	{

		private	var	_type:	string

		private	var	_schema:	numeric

		private	var	_created:	datetime

		private	var	_modified:	datetime

		private	var	userId:	integer

		private	var	name:	string

		private	var	phone:	string

		private	var	email:	string

		constructor	(doc)	{

				this.set_Type(doc._type)

				this.set_Schema(doc._schema)

				this.set_Created(doc._created)

				this.set_Modified(doc._modified)

				this.setUserId(doc.userId)

				this.setName(doc.name)

				this.setPhone(doc.phone)

				this.setEmail(doc.email)

		}

		...

		public	getPhone()	{

				//	return	the	phone	formatted	as:	(111)	111-1111

				return	"("	+	this.phone.substring(0,	3)	+	")	"	+

						this.phone.substring(3,	6)	+	"-"	+

						this.phone.substring(6)

		}

		public	setPhone(value	string)	{

				value	=	value.replace("[^:digit:]",	"")	//	remove	any	non-numeric	charac

ters

				//	validate	the	phone

				if	(value.length	!=	10)	{

						throw("invalid	phone	number")

				}

				this.phone	=	value

		}

Document	Management	Strategies

9Couchbase	Professional	Services

		...

}

Using	the	accessors,	instead	of	references	would	look	similar	to:

user	=	new	User(...)	//	create	a	new	instance	of	User

print(user.getPhone())	//	output	the	users	name

user.setPhone("111-222-3333")	//	update	the	users	phone	number

As	this	functionality	will	be	common	across	all	of	the	documents	within	our	domain,	centralize	these	shared
properties	and	methods	into	a	Base	class	that	all	document	classes	extend.

public	class	Base	{

		private	var	_type:	string

		private	var	_schema:	numeric

		private	var	_created:	datetime

		private	var	_modified:	datetime

		constructor	(doc)	{

				this.populate(doc)	//	load	the	document

		}

		private	populate(doc)	{

				//	loop	doc	properties	and	dynamically	call	set	accessors

				//	loading	the	entire	document

		}

		...

		public	get_Modified()	{

				return	this._modified;

		}

		public	set_Modified(value	datetime)	{

				this._modified	=	value

		}

}

public	class	User	extends	Base	{

		private	var	userId:	integer

		private	var	name:	string

		private	var	phone:	string

		private	var	email:	string

		constructor	User(doc)	{

				super(doc)

				this.set_Type("user")

				this.set_Schema("1.0")

		}

Document	Management	Strategies

10Couchbase	Professional	Services

		...

		public	getName()	{

				return	this.name;

		}

		public	setName(value	string)	{

				this.name	=	value

		}

}

Evolving	the	Schema

Let's	say	at	some	point	in	the	near	future,	the	decision	is	made	to	split	the		name		field	out	into	first	and	last
name.	This	is	a	simple	update	to	the	document	structure,	as	follows:

{		

		"_type":"user",		

		"_schema":	"2.0",		

		"_created":	1544759124,

		"userId":	123,		

		"firstName":	"Joe",

		"lastName":	"Smith",

		"phone":	"1234567890",

		"email":	"joe.smith@acme.com"

}

Easy	enough,	but	now	we	have	to	deal	with	the	structure	change	in	the	data	objects:

public	class	User	extends	Base	{

		private	var	userId:	integer

		private	var	firstName:	string

		private	var	lastName:	string

		private	var	phone:	string

		private	var	email:	string

		constructor	User(doc)	{

				super(doc)

				this.set_Type("user")

				this.set_Schema("2.0")

		}

}

Simple	right?	Only,	what	happens	when	you	try	to	load	a	user	document	that's	still	formatted	for	version	1.0?
In	this	case,	we	will	introduce	a		migrate()		into	our	class	that	is	the	first	method	called	from	the
constructor

Document	Management	Strategies

11Couchbase	Professional	Services

public	class	User	extends	Base	{

		private	var	userId:	integer

		private	var	firstName:	string

		private	var	lastName:	string

		private	var	phone:	string

		private	var	email:	string

		constructor	User(doc)	{

				doc	=	migrate(doc)	//	transform	the	document

				super(doc)

				this.set_Type("user")

				this.set_Schema("2.0")

		}

		private	migrate(doc){

				if(doc._schema	==	"1.0")	{

						this.setFirstName(doc.name.split("	")[0])

						this.setLastName(doc.name.split("	")[1])

						delete	doc.name

						doc._schema	=	"2.0"

				}

		}

}

Our		migrate()		method,	now	has	the	business	rules	in	place	to	transform	a	version	1.0	document	to	a
version	2.0	document.	As	part	of	our	code	changes,	we	would've	introduced	accessors	for	the	new
properties:		getFirstName()	,		setFirstName()	,		getLastName()	,		setLastName()	.	But
what	about	the	old	accessors?	Should	they	be	removed?	They	could	be	removed,	but	then	all	code
referencing	those	methods	would	need	to	be	refactored	as	well,	it	is	safer	to	just	update	their	implementation:

		public	getName()	{

				return	this.getFirstName()	+	"	"	+	this.getLastName()

		}

		public	setName(name)	{

				setFirstName(name.split("	")[0])

				setLastName(name.split("	")[1])

		}

By	maintaining	the	older	accessor	methods,	you're	protecting	against	any	code	locations	that	are	missed
during	the	refactoring	and	are	still	calling	the	older	methods.

Further	Evolutions

Now	let's	say	that	the	phone	property	is	changed	from	a	single	value	to	a	list	of	multiple	phone	numbers:

Document	Management	Strategies

12Couchbase	Professional	Services

{		

		"_type":"user",		

		"_schema":	"3.0",		

		"_created":	1544759124,

		"userId":	123,		

		"firstName":	"Joe",

		"lastName":	"Smith",

		"phones":	[

				{

						"type":	"mobile",

						"number":	"1234567890"

				}

]

}

Now	you've	got	to	extend	the	modifications	routines	for	this	additional	schema	change:

public	class	User	extends	Base	{

		private	var	userId:	integer

		private	var	firstName:	string

		private	var	lastName:	string

		private	var	phones:	array

		private	var	email:	string

		constructor	User(doc)	{

				doc	=	migrate(doc)	//	transform	the	document

				super(doc)

				this.set_Type("user")

				this.set_Schema("3.0")

		}

		...

		public	getPhones()	{

				return	this.phones

		}

		public	setPhones(value)	{

				return	this.phones	=	value

		}

		public	addPhone(type,	phone)	{

				//	validate	the	type

				if	(!["other",	"mobile",	"home",	"work"].contains(type))	{

						throw("invalid	type")

				}

				phone	=	phone.replace("[^:digit:]",	"")	//	remove	any	non-numeric	charac

ters

				//	validate	the	phone

Document	Management	Strategies

13Couchbase	Professional	Services

				if	(phone.length	!=	10)	{

						throw("invalid	phone	number")

				}

				this.phones.push({

						type:	type,

						phone:	phone

				})

		}

		public	getPhone()	{

				//	return	the	phone	formatted	as:	(111)	111-1111

				var	phone	=	this.getPhones()[0];

				return	"("	+	phone.substring(0,	3)	+	")	"	+

						phone.substring(3,	6)	+	"-"	+

						phone.substring(6)

		}

		public	setPhone(value	string)	{

				addPhone("other",	value)

		}

		...

		private	migrate(doc){

				if(doc._schema	==	"1.0")	{

						doc	=	migrateFromV1toV2(doc)

				}

				if(doc._schema	==	"2.0")	{

						doc	=	migrateFromV2toV3(doc)

				}

		}

		private	migrateFromV1toV2(doc){

				this.setFirstName(doc.name.split("	")[0])

				this.setLastName(doc.name.split("	")[1])

				delete	doc.name

				doc._schema	=	"2.0"

		}

		private	migrateFromV2toV3(doc){

				this.addPhone("other",	doc.phone)

				delete	doc.phone

				doc._schema	=	"3.0"

		}

}

We're	no	longer	dealing	with	a	scalar	value,	but	a	complex	array/list.	Based	on	your	access	patterns	and	use
case	this	has	the	potential	to	be	more	involved.	For	example	along	with	property	specific	accessors
	getPhones()		and		setPhones()		you	may	want	to	have		addPhone()	,		removePhone()	,
	updatePhone()	,	etc.

Document	Management	Strategies

14Couchbase	Professional	Services

Summary

So,	as	you've	seen,	by	adding	a	schema	version	number	to	the	document,	there	are	ways	of	handling	in	the
code	the	migrations	of	documents	from	the	older	versions	to	the	newer,	without	having	to	perform	a	massive
data	conversion	on	your	Couchbase	bucket.	You	have	a	choice	of	doing	an	at	request	time	migration,	or	you
could	still	choose	to	do	a	mass	migration	of	data	but	the	rules	for	that	migration	are	in	reusable	code.	This	is
primarily	concerned	with	data	values	that	change	the	data	type,	are	deprecated	from	the	document	model,	or
other	changes	that	your	application	needs	to	deal	with	as	your	data	model	evolves.

In	summary,	you	need	to:

Put	some	metadata	into	your	documents,	such	as	the	document	type	and	version.
In	your	data	object	loader/serialization	method,	include	functionality	to	migrate	the	document	from	one
version	to	the	next.
Be	sure	to	keep	the	schema	migration	routines	in	order,	as	new	revisions	are	created	and	the	schema
evolves.

Document	Revisions
From	time	to	time,	there	may	be	a	requirement	to	save	multiple	revisions	of	a	document	within	a	bucket,	this
history	is	maintained	by	the	application.	This	section	is	intended	to	outline	one	way	this	can	be
accomplished.

Document	Metadata

Just	as	we've	shown	in	previous	sections,	we'll	add	a	standardized	metadata	property	to	our	document
model	to	assist	with	storing	the	revision	information.	A	certain	amount	of	this	is	standard	practice	around	the
industry.	Building	on	our	User	model,	we	can	add	a		_ver		property	to	document	the	current	version	of	the
document.

{		

		"_type":"user",		

		"_schema":	"3.0",

		"_ver":	1,

		"_created":	1544759124,

		"userId":	123,		

		"firstName":	"Joe",

		"lastName":	"Smith",

		"phones":	[

				{

						"type":	"mobile",

						"number":	"1234567890"

				}

]

}

Document	Management	Strategies

15Couchbase	Professional	Services

Then,	in	your	data	object,	you	would	want	to	add	some	code	to	initialize	and	increment	this	revision	number
as	updates	are	made	to	a	document.

public	class	User	extends	Base	{

		private	var	_ver:	integer

		private	var	userId:	integer

		private	var	firstName:	string

		private	var	lastName:	string

		private	var	phones:	array

		private	var	email:	string

		constructor	User(doc)	{

				doc	=	migrate(doc)	//	transform	the	document

				super(doc)

				this.set_Type("user")

				this.set_Schema("3.0")

				//	set	_ver	if	it	is	not	defined

				if	(!this._ver)	{

						this._ver	=	1

				}

		}

		...

}

Maintaining	Revisions

Because	you	are	wanting	to	maintain	the	revisions	of	a	document,	this	requires	steps	to	be	taken	with	writing
updates	to	a	document	to	preserve	the	previous	version.	It	also	requires	using	a	predictable	pattern	in	the
revision	key	generation	to	make	it	easy	to	find	and	retrieve	specific	document	revisions.	One	of	the	simplest
ways	of	using	a	predictable	pattern	in	the	key	generation	is	to	append	the	revision	number	to	the	document
key,	so	if	the	document	had	a	key	of		user:123	,	the	revision	might	have	a	key	like		user:123:v:1	.
So,	if	a	revision	had	been	made	to	our	example	user	document,	you'd	have	two	different	documents:

Document	ID:		user:123	

{		

		"_type":"user",		

		"_schema":	"3.0",

		"_ver":	2,

		"_created":	1544759124,

		"userId":	123,		

		"firstName":	"Joe",

		"lastName":	"Smith",

		"phones":	[

				{

						"type":	"mobile",

Document	Management	Strategies

16Couchbase	Professional	Services

						"number":	"1234567890"

				},

				{

						"type":	"home",

						"number":	"1234445555"

				}

]

}

and

Document	ID:		user:123:v:1	

{		

		"_type":"user",		

		"_schema":	"3.0",

		"_ver":	1,

		"_created":	1544759124,

		"userId":	123,		

		"firstName":	"Joe",

		"lastName":	"Smith",

		"phones":	[

				{

						"type":	"mobile",

						"number":	"1234567890"

				}

]

}

This	will	require	code	in	your	objects		save()		method	to	make	a	copy	of	the	current	document	prior	to
saving	the	update:

public	save()	{

		this.copyRevision()

		this._ver++

		bucket.upsert(

				this._type	+	":"	+	this.userId,	//	key

				this	//	value

)

}

private	copyRevision()	{

		var	doc	=	bucket.get(this._type	+	":"	+	this.userId)

		bucket.insert(

				this._type	+	this.userId	+	":v:"	+	this._ver,	//	key

Document	Management	Strategies

17Couchbase	Professional	Services

				doc	//	value

)

}

Limiting	Revisions

The	problem	with	maintaining	document	revisions	is	that	they	can	significantly	increase	the	amount	of
storage	space	needed	to	hold	them.	It's	not	unusual	for	a	document	to	be	updated	thousands	of	times	over
its	lifespan.	So	odds	are	that	you'll	want	to	limit	the	number	of	revisions	to	be	kept.	To	avoid	having	to	go
back	and	purge	outdated	revisions,	the	better	solution	would	be	to	determine	ahead	of	time	what	your
revision	limit	is	going	to	be,	and	to	build	that	into	your	data	objects:

private	maxRevisionCount	=	10

public	class	User	extends	Base	{

		...

}

Then	you	would	want	to	perform	a	check	before	saving	a	revision	to	see	if	an	older	revision	needs	to	be
deleted:

public	save()	{

		if	(this._ver	>=	maxRevisionCount)	{

				this.deleteOldRevision()

		}

		this.copyRevision()

		this._ver++

		bucket.upsert(

				this._type	+	":"	+	this.userId,	//	key

				this	//	value

)

}

private	deleteOldRevision()	{

		bucket.delete(this._type	+	":"	+	this.userId	+	":v:"	+	(this._ver	-	maxRev

isionCount))

}

Summary

By	adding	a	revision	number	and	using	a	key	generation	scheme	that	appends	the	revision	number	to	the
current	revision	key	in	a	predictable	way,	it	can	be	fairly	straightforward	to	implement	a	document	revision
retention	policy.

In	summary,	you'll	need	to:

Document	Management	Strategies

18Couchbase	Professional	Services

Add	a	revision	number	property	to	the	document	and	data	object.
Increment	the	revision	number	property	each	time	the	document	is	updated.
Copy	the	prior	revision	document,	adding	the	revision	number	to	the	document	key	in	a	predictable	way
prior	to	saving	any	updates	to	the	current	revision	of	the	document.
Hard-code	a	maximum	number	of	revisions	to	be	kept.
If	the	revision	number	of	the	document	is	greater	than	the	maximum	number	of	revisions	being	kept,
subtract	the	maximum	number	of	revisions	from	the	current	revision	number	and	delete	that	version	of
the	document	when	saving	any	updates	to	the	current	revision.

Document	Management	Strategies

19Couchbase	Professional	Services

	Notice and Disclaimer
	Document Management Strategies

