


Notice	and	Disclaimer

The	recommendations,	best	practice	guides,	tuning	examples	(together	"Best	Practices")	as	well	as	sample
code,	scripts	(together	"Sample	Code",	collectively	with	the	Best	Practices	is	"Content")	contained	herein	are
the	property	of	Couchbase,	Inc.	("Couchbase")	and	are	provided	for	illustrative	and	instructional	purposes
only.	The	user	of	the	Content	acknowledges	and	accepts	that	the	Content	is	not	supported	by	any	license
agreement	between	Couchbase	and	the	user.

The	Content	may	not	be	reproduced,	disseminated,	sold,	sub-licensed,	assigned,	rented	leased,	distributed
or	otherwise	published,	in	whole	or	in	part	without	prior	written	permission	from	Couchbase.

The	user	of	the	Source	Code	assumes	the	entire	risk	of	any	use	it	may	make	or	permit	to	be	made	of	the
Source	Code	and	is	solely	responsible	for	adequate	protection	and	backup	of	its	data.	Couchbase	reserves
the	right	to	make	changes	to	the	Source	Code	or	Best	Practices	at	any	time	without	prior	notice.	ALWAYS
thoroughly	evaluate	Sample	Code	using	test	data	to	ensure	proper	operation	and	confirm	the	Sample	Code
causes	no	adverse	effects	prior	to	use	on	live	or	production	data.

Couchbase	hereby	reserves	all	rights	in	the	Content	under	the	copyright	laws	of	the	United	States	and
applicable	international	laws,	treaties,	and	conventions.

THE	CONTENT	HEREIN	IS	PROVIDED	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,
INCLUDING	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR
PURPOSE	ARE	DISCLAIMED.	WITHOUT	LIMITING	ANY	OF	THE	FOREGOING	AND	TO	THE	MAXIMUM
EXTENT	PERMITTED	BY	APPLICABLE	LAW,	IN	NO	EVENT	SHALL	Couchbase	OR	ITS	CONTRIBUTORS
BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR
SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	SUSTAINED	BY	YOU
OR	A	THIRD	PARTY,	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THE	CONTENT,
EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.	The	foregoing	shall	not	exclude	or	limit	any
liability	that	may	not	by	applicable	law	be	excluded	or	limited.

Use	of	or	access	to	Couchbase	products	or	services	requires	a	separate	license	from	Couchbase.

Notice	and	Disclaimer

3Couchbase	Professional	Services



Data	Modeling	Guide

This	document	describes	core	elements	you	will	use	to	handle	data	in	Couchbase	Server.	It	describes	the
ways	you	can	structure	individual	JSON	documents	for	your	application,	how	to	store	the	documents	from	a
Couchbase	SDK,	and	describe	different	approaches	you	may	take	when	you	structure	data	in	documents.

Couchbase	Server	is	a	document	database.	Unlike	traditional	relational	databases,	you	store	information	in
documents	rather	than	table	rows.	Couchbase	has	a	much	more	flexible	data	format.	Documents	generally
contain	all	the	information	about	a	data	entity,	including	compound	data	rather	than	the	data	being
normalized	across	tables.

A	document	is	a	JSON	object	consisting	of	a	number	of	key-value	pairs	that	you	define.	There	is	no	schema
in	Couchbase;	every	JSON	document	can	have	its	own	individual	set	of	keys,	although	you	may	probably
adopt	one	or	more	informal	schemas	for	your	data.

With	Couchbase	Server,	one	of	the	benefits	of	using	JSON	documents	is	that	you	can	index	and	query	these
records.	This	enables	you	to	collect	and	retrieve	information	based	on	rules	you	specify	about	given	fields;	it
also	enables	you	to	retrieve	records	without	using	the	key	for	the	record.

Sections
Comparing	Document-Oriented	and	Relational	Data
Using	JSON	Documents
Schemaless	Data	Modeling
Phases	of	Data	Modeling
JSON	Design	Choices
Key	Design
Standardized	Fields
Optimizations
Resources

Comparing	Document-Oriented	and	Relational	data
In	a	relational	database	system	you	must	define	a	schema	before	adding	records	to	a	database.	The	schema
is	the	structure	described	in	a	formal	language	supported	by	the	database	and	provides	a	blueprint	for	the
tables	in	a	database	and	the	relationships	between	tables	of	data.	Within	a	table,	you	need	to	define
constraints	in	terms	of	rows	and	named	columns	as	well	as	the	type	of	data	that	can	be	stored	in	each
column.

In	contrast,	a	document-oriented	database	contains	documents,	which	are	records	that	describe	the	data	in
the	document,	as	well	as	the	actual	data.	Documents	can	be	as	complex	as	you	choose;	you	can	use	nested
data	to	provide	additional	sub-categories	of	information	about	your	object.	You	can	also	use	one	or	more

Data	Modeling	Guide

4Couchbase	Professional	Services



document	to	represent	a	real-world	object.	The	following	compares	a	conventional	table	with	document-
based	objects:

In	this	example	we	have	a	table	that	represents	beers	and	their	respective	attributes:	id,	beer	name,	brewer,
bottles	available	and	so	forth.	As	we	see	in	this	illustration,	the	relational	model	conforms	to	a	schema	with	a
specified	number	of	fields	which	represent	a	specific	purpose	and	data	type.	The	equivalent	document-based
model	has	an	individual	document	per	beer;	each	document	contains	the	same	types	of	information	for	a
specific	beer.

In	a	document-oriented	model,	data	objects	are	stored	as	documents;	each	document	stores	your	data	and
enables	you	to	update	the	data	or	delete	it.	Instead	of	columns	with	names	and	data	types,	we	describe	the
data	in	the	document,	and	provide	the	value	for	that	description.	If	we	wanted	to	add	attributes	to	a	beer	in	a
relational	model,	we	would	need	to	modify	the	database	schema	to	include	the	additional	columns	and	their
data	types.	In	the	case	of	document-based	data,	we	would	add	additional	key-value	pairs	into	our	documents
to	represent	the	new	fields.

The	other	characteristic	of	relational	database	is	data	normalization;	this	means	you	decompose	data	into
smaller,	related	tables.	The	figure	below	illustrates	this:

Data	Modeling	Guide

5Couchbase	Professional	Services



In	the	relational	model,	data	is	shared	across	multiple	tables.	The	advantage	to	this	model	is	that	there	is
less	duplicated	data	in	the	database.	If	we	did	not	separate	beers	and	breweries	into	different	tables	and	had
one	beer	table	instead,	we	would	have	repeated	information	about	breweries	for	each	beer	produced	by	that
brewer.

The	problem	with	this	approach	is	that	when	you	change	information	across	tables,	you	need	to	lock	those
tables	simultaneously	to	ensure	information	changes	across	the	table	consistently.	Because	you	also	spread
information	across	a	rigid	structure,	it	makes	it	more	difficult	to	change	the	structure	during	production,	and	it
is	also	difficult	to	distribute	the	data	across	multiple	servers.

In	the	document-oriented	database,	we	could	choose	to	have	two	different	document	structures:	one	for
beers,	and	one	for	breweries.	Instead	of	splitting	your	application	objects	into	tables	and	rows,	you	would
turn	them	into	documents.	By	providing	a	reference	in	the	beer	document	to	a	brewery	document,	you	create
a	relationship	between	the	two	entities:

Data	Modeling	Guide

6Couchbase	Professional	Services



In	this	example	we	have	two	different	beers	from	the	Amstel	brewery.	We	represent	each	beer	as	a	separate
document	and	reference	the	brewery	in	the	brewer	field.	The	document-oriented	approach	provides	several
upsides	compared	to	the	traditional	RDBMS	model.	First,	because	information	is	stored	in	documents,
updating	a	schema	is	a	matter	of	updating	the	documents	for	that	type	of	object.	This	can	be	done	with	no
system	downtime.	Secondly,	we	can	distribute	the	information	across	multiple	servers	with	greater	ease.
Since	records	are	contained	within	entire	documents,	it	makes	it	easier	to	move,	or	replicate	an	entire	object
to	another	server.

Using	JSON	documents
JavaScript	Object	Notation	(JSON)	is	a	lightweight	data-interchange	format	which	is	easy	to	read	and
change.	JSON	is	language-independent	although	it	uses	similar	constructs	to	JavaScript.	JSON	documents
enable	you	to	benefit	from	all	the	Couchbase	features,	such	as	indexing	and	querying;	they	also	to	provide	a
logical	structure	for	more	complex	data	and	enable	you	to	provide	logical	connections	between	different
records.

The	following	are	basic	data	types	supported	in	JSON:

Numbers,	including	integer	and	floating	point
Strings,	including	all	Unicode	characters	and	backslash	escape	characters
Boolean:	true	or	false
Arrays,	enclosed	in	square	brackets:		["one",	"two",	"three"]	
Objects,	consisting	of	key-value	pairs,	and	also	known	as	an	associative	array	or	hash.	The	key	must	be
a	string	and	the	value	can	be	any	supported	JSON	data	type.

For	more	information	about	creating	valid	JSON	documents,	please	refer	to	http://www.json.org.

When	you	use	JSON	documents	to	represent	your	application	data,	you	should	think	about	the	document	as
a	logical	container	for	information.	This	involves	thinking	about	how	data	from	your	application	fits	into	natural
groups.	It	also	requires	thinking	about	the	information	you	want	to	manage	in	your	application.	Doing	data
modeling	for	Couchbase	Server	is	a	similar	process	that	you	would	do	for	traditional	relational	databases;
there	is	however	much	more	flexibility	and	you	can	change	your	mind	later	on	your	data	structures.	As	a	best
practice,	during	your	data/document	design	phase,	you	want	to	evaluate:

What	are	the	things	you	want	to	manage	in	your	applications,	for	instance,	users,	breweries,	beers	and
so	forth.
What	do	you	want	to	store	about	the	things.	For	example,	this	could	be	alcohol	percentage,	aroma,
location,	etc.
How	do	the	things	in	your	application	fit	into	natural	groups.

For	instance,	if	you	are	creating	a	beer	application,	you	might	want	a	particular	document	structure	to
represent	a	beer:

{

		"name":	"Hoptimus	Prime",

		"description":	"North	American	Ale	Beer",

		"category":	"North	American	Ale",

		"updated":	"2010-07-22	20:00:20"

Data	Modeling	Guide

7Couchbase	Professional	Services

http://www.json.org


}

For	each	of	the	keys	in	this	JSON	document	you	would	provide	unique	values	to	represent	individual	beers.
If	you	want	to	provide	more	detailed	information	in	your	beer	application	about	the	actual	breweries,	you
could	create	a	JSON	structure	to	represent	a	brewery:

{

		"name":	"Legacy	Brewing	Co.",

		"address":	"525	Canal	Street",

		"city":	"Reading",

		"state":	"Pennsylvania",

		"website":	"legacybrewing.com",

		"description":	"Brewing	Company"

}

Performing	data	modeling	for	a	document-based	application	is	no	different	than	the	work	you	would	need	to
do	for	a	relational	database.	For	the	most	part	it	can	be	much	more	flexible,	it	can	provide	a	more	realistic
representation	or	your	application	data,	and	it	also	enables	you	to	change	your	mind	later	about	data
structure.	For	more	complex	items	in	your	application,	one	option	is	to	use	nested	pairs	to	represent	the
information:

{

		"name":	"Legacy	Brewing	Co.",

		"address":	"525	Canal	Street",

		"city":	"Reading",

		"state":	"Pennsylvania",

		"website":	"legacybrewing.com",

		"description":	"Brewing	Company",

		"geo":	{

				"location":	[

						"-105.07",

						"40.59"

				],

				"accuracy":	"RANGE_INTERPOLATED"

		},

		"beers":	[

				"beer:id4058",

				"beer:id7628"

		]

}

In	this	case	we	added	a	nested	attribute	for	the	geolocation	of	the	brewery	and	for	beers.	Within	the	location,
we	provide	an	exact	longitude	and	latitude,	as	well	as	level	of	accuracy	for	plotting	it	on	a	map.	The	level	of
nesting	you	provide	is	your	decision;	as	long	as	a	document	is	under	the	maximum	storage	size	for
Couchbase	Server,	you	can	provide	any	level	of	nesting	that	you	can	handle	in	your	application.

Data	Modeling	Guide

8Couchbase	Professional	Services



In	traditional	relational	database	modeling,	you	would	create	tables	that	contain	a	subset	of	information	for	an
item.	For	instance	a	brewery	may	contain	types	of	beers	which	are	stored	in	a	separate	table	and	referenced
by	the	beer	ID.	In	the	case	of	JSON	documents,	you	use	key-values	pairs,	or	even	nested	key-value	pairs.

Schemaless	Data	Modeling
When	you	use	documents	to	represent	data,	a	database	schema	is	optional.	The	majority	of	your	effort	will
be	creating	one	or	more	documents	that	will	represent	application	data.	This	document	structure	can	evolve
over	time	as	your	application	grows	and	adds	new	features.

In	Couchbase	Server	you	do	not	need	to	perform	data	modeling	and	establish	relationships	between	tables
the	way	you	would	in	a	traditional	relational	database.	Technically,	every	document	you	store	with	structure
in	Couchbase	Server	has	its	own	implicit	schema;	the	schema	is	represented	in	how	you	organize	and	nest
information	in	your	documents.

While	you	can	choose	any	structure	for	your	documents,	the	JSON	model	in	particular	will	help	you	organize
your	information	in	a	standard	way,	and	enable	you	to	take	advantage	of	Couchbase	Server's	ability	to	index
and	query.	As	a	developer	you	benefit	in	several	ways	from	this	approach:

Extend	the	schema	at	run	time,	or	anytime.	You	can	add	new	fields	for	a	type	of	item	anytime.	Changes
to	your	schema	can	be	tracked	by	a	version	number,	or	by	other	fields	as	needed.
Document-based	data	models	may	better	represent	the	information	you	want	to	store	and	the	data
structures	you	need	in	your	application.
You	design	your	application	information	in	documents,	rather	than	model	your	data	for	a	database.
Converting	application	information	into	JSON	is	very	simple;	there	are	many	options,	and	there	are
many	libraries	widely	available	for	JSON	conversion.
Minimization	of	one-to-many	relationships	through	use	of	nested	entities	and	therefore,	reduction	of
joins.

There	are	several	considerations	to	have	in	mind	when	you	design	your	JSON	document:

Whether	you	want	to	use	a	type	field	at	the	highest	level	of	your	JSON	document	in	order	to	group	and
filter	object	types.
What	particular	keys,	ids,	prefixes	or	conventions	you	want	to	use	for	items,	for	instance
beer_My_Brew.
When	you	want	a	document	to	expire,	if	at	all,	and	what	expiration	would	be	best.
If	want	to	use	a	document	to	access	other	documents.	In	other	words,	you	can	store	keys	that	refer
other	documents	in	a	JSON	document	and	get	the	keys	through	this	document.	In	the	NoSQL	database
jargon,	this	is	often	known	as	using	composite	keys.

You	can	use	a	type	field	to	group	together	sets	of	records.	For	example,	the	following	JSON	document
contains	a	type	field	with	the	value	beer	to	indicate	that	the	document	represents	a	beer.	A	document	that
represents	another	kind	of	beverage	would	use	a	different	value	in	the	type	field,	such	as	ale	or	cider.

{

		"beer_id":	"beer_Hoptimus_Prime",

		"type":	"beer",

		"abv":	10,

		"category":	"North	American	Ale",

Data	Modeling	Guide

9Couchbase	Professional	Services



		"name":	"Hoptimus	Prime",

		"style":	"Double	India	Pale	Ale"

}

Here	is	another	type	of	document	in	our	application	which	we	use	to	represent	breweries.	As	in	the	case	of
beers,	we	have	a	type	field	we	can	use	now	or	later	to	group	and	categorize	our	beer	producers:

{

		"brewery_id":	"brewery_Legacy_Brewing_Co",

		"type":	"brewery",

		"name":	"Legacy	Brewing	Co.",

		"address":	"525	Canal	Street,	Reading,	Pennsylvania,	19601	United	States",

		"updated":	"2010-07-22	20:00:20"

}

What	happens	if	we	want	to	change	the	fields	we	store	for	a	brewery?	In	this	case	we	just	add	the	fields	to
brewery	documents.	In	this	case	we	decide	later	that	we	want	to	include	GPS	location	of	the	brewery:

{

		"brewery_id":	"brewery_Legacy_Brewing_Co",

		"type":	"brewery",

		"name":	"Legacy	Brewing	Co.",

		"address":	"525	Canal	Street,	Reading,	Pennsylvania,	19601	United	States",

		"updated":	"2010-07-22	20:00:20",

		"latitude":	-75.928469,

		"longitude":	40.325725

}

So	in	the	case	of	document-based	data,	we	extend	the	record	by	just	adding	the	two	new	fields	for	latitude
and	longitude.	When	we	add	other	breweries	after	this	one,	we	would	include	these	two	new	fields.	For	older
breweries	we	can	update	them	with	the	new	fields	or	provide	programming	logic	that	shows	a	default	for
older	breweries.	The	best	approach	for	adding	new	fields	to	a	document	is	to	perform	a	compare	and	swap
operation	on	the	document	to	change	it;	with	this	type	of	operation,	Couchbase	Server	will	send	you	a
message	that	the	data	has	already	changed	if	someone	has	already	changed	the	record.	For	more
information	about	compare	and	swap	methods	with	Couchbase,	see	Compare	and	Swap	(CAS).

To	create	relationships	between	items,	we	again	use	fields.	In	this	example	we	create	a	logical	connection
between	beers	and	breweries	using	the	brewery	field	in	our	beer	document	which	relates	to	the	ID	field	in	the
brewery	document.	This	is	analogous	to	the	idea	of	using	a	foreign	key	in	traditional	relational	database
design.

This	first	document	represents	a	beer,	Hoptimus	Prime:

{

		"beer_id":	"beer_Hoptimus_Prime",

		"type":	"beer",

Data	Modeling	Guide

10Couchbase	Professional	Services

https://developer.couchbase.com/documentation/server/3.x/developer/dev-guide-3.0/update-info.html#concept29631__cas


		"abv":	10,

		"brewery":	"brewery_Legacy_Brewing_Co",

		"category":	"North	American	Ale",

		"name":	"Hoptimus	Prime",

		"style":	"Double	India	Pale	Ale"

}

This	second	document	represents	the	brewery	which	brews	Hoptimus	Prime:

{

		"brewery_id":	"brewery_Legacy_Brewing_Co",

		"type":	"brewery",

		"name":	"Legacy	Brewing	Co.",

		"address":	"525	Canal	Street	Reading,	Pennsylvania,	19601	United	States",

		"updated":	"2010-07-22	20:00:20",

		"latitude":	-75.928469,

		"longitude":	40.325725

}

In	our	beer	document,	the	brewery	field	points	to	'brewery_Legacy_Brewery_Co',	which	is	the	key	for	the
document	that	represents	the	brewery.	By	using	this	model	of	referencing	documents	within	a	document,	we
create	relationships	between	application	objects.

Phases	of	Data	Modeling
A	data	modeling	exercise	typically	consists	of	two	phases:	logical	data	modeling	and	physical	data
modeling.	Logical	data	modeling	focuses	on	describing	your	entities	and	relationships.	Physical	data
modeling	takes	the	logical	data	model	and	maps	the	entities	and	relationships	to	physical	containers.

Logical	Data	Modeling

The	logical	data	modeling	phase	focuses	on	describing	your	entities	and	relationships.	Logical	data	modeling
is	done	independently	of	the	requirements	and	facilities	of	the	underlying	database	platform.

At	a	high	level,	the	outcome	of	this	phase	is	a	set	of	entities	(objects)	and	their	attributes	that	are	central	to
your	application's	objectives,	as	well	as	a	description	of	the	relationships	between	these	entities.	For
example,	entities	in	an	order	management	application	might	be	users,	orders,	order	items	and	products
where	their	relationships	might	be	"users	can	have	many	orders,	and	in	turn	each	order	can	have	many
items".

Lets	look	at	some	of	the	key	definitions	you	need	from	your	logical	data	modeling	exercise:

Data	Modeling	Guide

11Couchbase	Professional	Services



Entity	keys:	Each	entity	instance	is	identified	by	a	unique	key.	The	unique	key	can	be	a	composite	of
multiple	attributes	or	a	surrogate	key	generated	using	a	counter	or	a	UUID	generator.	Composite	or
compound	keys	can	be	utilized	to	represent	immutable	properties	and	efficient	processing	without
retrieving	values.	The	key	can	be	used	to	reference	the	entity	instance	from	other	entities	for
representing	relationships.
Entity	attributes:	Attributes	can	be	any	of	the	basic	data	types	such	as	string,	numeric,	or	Boolean,	or
they	can	be	an	array	of	these	types.	For	example,	an	order	might	define	a	number	of	simple	attributes
such	as	order	ID	and	quantity,	as	well	as	a	complex	attribute	like	product	which	in	turn	contains	the
attributes	product	name,	description	and	price.
Entity	relationships:	Entities	can	have	1-to-1,	1-to-many,	or	many-to-many	relationships.	For	example,
"an	order	has	many	items"	is	a	1-to-many	relationship.

Analyze	your	logical	model

Lets	look	at	a	highly	simplified	Order	Management	System	as	an	example.

In	the	below	diagram:	Order	embeds	Items,	and	refs	external	Product	(1:n)	and	Paytype	(1:1)	docs.

In	the	below	diagram:	Order	embeds	Paytype	and	refs	Items	which	embeds	Product.

Data	Modeling	Guide

12Couchbase	Professional	Services



Logical	data	modeling	starts	with	a	decision	on	how	to	map	your	entities	to	documents.	JSON	documents
provide	great	flexibility	in	mapping	1-to-1,	1-to-many	or	many-to-many	relationships.

At	one	end,	you	can	model	each	entity	to	its	own	document	with	references	to	represent	relationships.	At	the
other	end,	you	can	embed	all	related	entities	into	a	single	large	document.	However,	the	right	design	for	your
application	usually	lies	somewhere	in	between.	Exactly	how	you	should	balance	these	alternatives	depends
on	the	access	patterns	and	requirements	of	your	application.

When	to	Embed	&	When	to	Refer

Lets	take	a	look	at	the	example	of	a	stock	management	system	to	track	Couchbase-branded	swag.

Let's	imagine	the	standard	path	is:

1.	 A	customer	makes	an	order.
2.	 A	stock	picker	receives	the	order	and	packages	the	items.
3.	 A	dispatcher	sends	out	the	package	through	a	delivery	service.	At	the	moment	the	customer	makes	an

order,	we	have	a	choice	of	how	we	store	the	order	data	in	Couchbase:
either	embed	all	the	order	information	in	one	document
or	maintain	one	main	copy	of	each	record	involved	and	refer	to	it	from	the	order	document.

Embedding:

If	we	chose	to	embed	all	the	data	in	one	document,	we	might	end	up	with	something	like	this:

{

		"orderID":	200,

		"customer":	{

				"name":	"Steve	Rothery",

				"address":	"11-21	Paul	Street",

				"city":	"London"

		},

		"products":	[

				{

						"itemCode":	"RedTShirt",

						"itemName":	"Red	Couchbase	t-shirt",

Data	Modeling	Guide

13Couchbase	Professional	Services



						"supplier":	"Lovely	t-shirt	company",

						"location":	"warehouse	1,	aisle	3,	location	4",

						"quantityOrdered":	3

				},

				{

						"itemCode":	"USB",

						"supplier":	"Memorysticks	Foreva",

						"itemName":	"Black	8GB	USB	stick	with	red	Couchbase	logo",

						"location":	"warehouse	1,	aisle	42,	location	12",

						"quantityOrder":	51

				}

		],

		"status":	"paid"

}

Here,	everything	we	need	to	fulfill	the	order	is	stored	in	one	document.	Despite	having	separate	customer
profile	and	item	details	documents,	we	replicate	parts	of	their	data	in	the	order	document.	This	might	seem
wasteful	or	even	dangerous,	if	you're	coming	from	the	relational	world.	However,	it's	quite	normal	for	a
document	database.	As	we	saw	earlier,	document	databases	operate	around	the	idea	that	one	document
could	store	everything	you	need	for	a	particular	situation.

There	are,	though,	some	trade-offs	to	embedding	data	like	this.

First,	let's	look	at	what's	potentially	bad:

Inconsistency:	if	Steve	wants	to	update	his	address	after	the	order	is	made	but	not	shipped,	we're
relying	on:

our	application	code	to	be	robust	enough	to	find	every	instance	of	his	address	in	the	database	and
update	it.
nothing	going	wrong	on	the	network,	database	side	or	elsewhere	that	would	prevent	the	update
completing	fully.

Queryability:	by	making	multiple	copies	of	the	same	data,	it	could	be	harder	to	query	on	the	data	we
replicate	as	we'll	have	to	filter	out	all	of	the	embedded	copies.
Size:	you	could	end	up	with	large	documents	consisting	of	lots	of	duplicated	data.
More	documents:	this	isn't	a	major	concern	but	it	could	have	some	impacts,	such	as	the	size	of	your
cached	working	set.

So,	what	benefits	does	embedding	give	us?	Mostly,	it	gives	us:

Speed	of	access:	embedding	everything	in	one	document	means	we	need	just	one	database	look-up.
Potentially	greater	fault	tolerance	at	read	time:	in	a	distributed	database	our	referred	documents
would	live	on	multiple	machines,	so	by	embedding	we're	introducing	fewer	opportunities	for	something	to
go	wrong	and	we're	simplifying	the	application	side.

When	to	embed:

You	might	want	to	embed	data	when:

1.	 Reads	greatly	outnumber	writes.
2.	 You're	comfortable	with	the	risk	of	inconsistent	data	across	the	multiple	copies.
3.	 You're	optimizing	for	speed	of	access.

Data	Modeling	Guide

14Couchbase	Professional	Services



Why	are	we	asking	whether	reads	outnumber	writes?

In	our	example	above,	each	time	someone	reads	our	order	they're	also	likely	to	update	the	state	of	the	order:

someone	in	the	warehouse	reads	the	order	document	and	updates	the	status	to	Picked,	once	they're
done.
one	of	our	despatch	team	reads	the	document	and	updates	the	status	to	Despatched	when	the	parcel	is
with	the	courier.
when	we	receive	an	automated	delivery	notice	from	the	courier,	our	application	updates	the	document
status	to	Delivered.

So,	here	the	reads	and	writes	are	likely	to	be	fairly	balanced.

Imagine,	though,	that	we	add	a	blog	to	our	swag	management	system	and	then	write	a	post	about	our	new
Couchbase	branded	USB	charger.	We'd	make	two,	maybe	three,	writes	to	the	document	while	finessing	our
post.	Then,	for	the	rest	of	that	document's	lifetime,	it'd	be	all	reads.	If	the	post	is	popular,	we	could	see	a
hundred	or	thousand	times	the	number	of	reads	compared	to	writes.

As	the	benefits	of	embedding	come	at	read-time,	and	the	risks	mostly	at	write-time,	it	seems	reasonable	to
embed	all	the	contents	of	the	blog	post	page	in	one	document	rather	than,	for	example,	pull	in	the	author
details	from	a	separate	profile	document.

There's	another	compelling	reason	to	embed	data:

You	actually	want	to	maintain	separate,	and	divergent,	copies	of	data.

In	our	swag	order	above,	we're	using	the	customer's	address	as	the	despatch	address.	By	embedding	the
despatch	address,	as	we	are,	we	can	easily	offer	the	option	to	choose	a	different	despatch	address	for	each
order.	We	also	get	a	historic	record	of	where	each	order	went	even	if	the	customer	later	changes	the	address
stored	in	their	profile.

Referring:

Another	way	to	represent	our	order	would	be	to	refer	to	the	user	profile	document	and	stock	item	details
document	but	not	to	pull	their	contents	into	the	order	document.

Let's	imagine	our	customer	profiles	are	keyed	by	the	customer's	email	address	and	our	stock	items	are
keyed	by	a	stock	code.	We	can	use	those	to	refer	to	the	original	documents:

{

		"orderID":	200,

		"customer":	"steve@gmail.com",

		"products":	[

				{

						"itemCode":	"RedTShirt",

						"quantityOrdered":	3

				},

				{

						"itemCode":	"USB",

						"quantityOrder":	51

				}

		],

Data	Modeling	Guide

15Couchbase	Professional	Services



		"status":	"paid"

}

When	we	view	Steve's	order,	we	can	fill	in	the	details	with	three	more	reads:	his	user	profile	(keyed	by	the
email	address)	and	the	stock	item	details	(keyed	by	their	item	codes).

It	requires	three	additional	reads	but	it	gives	us	some	benefits:

Consistency:	we're	maintaining	one	canonical	copy	of	Steve's	profile	information	and	the	stock	item
details.
Queryability:	this	time,	when	we	query	the	data	set	we	can	be	more	sure	that	the	results	are	the
canonical	versions	of	the	data	rather	than	embedded	copies.
Better	cache	usage:	as	we're	accessing	the	canonical	documents	frequently,	they'll	stay	in	our	cache,
rather	than	having	multiple	embedding	copies	that	are	accessed	less	frequently	and	so	drop	out	of	the
cache.
More	efficient	hardware	usage:	embedding	data	gives	us	larger	documents	with	multiple	copies	of	the
same	data;	referring	helps	reduce	the	disk	and	RAM	our	database	needs.

There	are	also	disadvantages:

Multiple	look-ups:	this	is	mostly	a	consideration	for	cache	misses,	as	the	read	time	increases	whenever
we	need	to	read	from	disk.
Consistency	is	enforced:	referring	to	a	canonical	version	of	a	document	means	updates	to	that
document	will	be	reflected	in	every	context	where	it	is	used.

When	to	Refer:

Referring	to	canonical	instances	of	documents	is	a	good	default	when	modeling	with	Couchbase.	You	should
be	especially	keen	to	use	referrals	when:

Consistency	of	the	data	is	a	priority.
You	want	to	ensure	your	cache	is	used	efficiently.
The	embedded	version	would	be	unwieldy.

That	last	point	is	particularly	important	where	your	documents	have	an	unbound	potential	for	growth.

Imagine	we	were	storing	activity	logs	related	to	each	user	of	our	system.	Embedding	those	logs	in	the	user
profile	could	lead	to	a	rather	large	document.

It's	unlikely	we'd	breach	Couchbase's	20	MB	upper	limit	for	an	individual	document	but	processing	the
document	on	the	application	side	would	be	less	efficient	as	the	log	element	of	the	profile	grows.	It'd	be	much
more	efficient	to	refer	to	a	separate	document,	or	perhaps	paginated	documents,	holding	the	logs.

General	Guidelines	on	Nest/Refer

If... Then	Consider...

Relationship	is	1:1	or	1:many Nest	related	data	as	nested	objects

Relationship	is	many:1	or	many:many Refer	to	related	data	as	separate	docs

Reads	are	mostly	parent	fields Refer	to	children	as	separate	docs

Reads	are	mostly	parent+child	fields Nest	children	as	nested	objects

Writes	are	mostly	either	parent	or	child Refer	to	children	as	separate	docs

Data	Modeling	Guide

16Couchbase	Professional	Services



Writes	are	mostly	both	parent	and	child Nest	children	as	nested	objects

Physical	Data	Modeling

The	physical	data	model	takes	the	logical	data	model	and	maps	the	entities	and	relationships	to	physical
containers.

In	Couchbase	Server,	items	are	used	to	store	associated	values	that	can	be	accessed	with	a	unique	key.
Couchbase	Server	also	provides	buckets	to	group	items.	Based	on	the	access	patterns,	performance
requirements,	and	atomicity	and	consistency	requirements,	you	can	choose	the	type	of	container(s)	to	use	to
represent	your	logical	data	model.

The	data	representation	and	containment	in	Couchbase	Server	is	drastically	different	from	relational
databases.	The	following	table	provides	a	high	level	comparison	to	help	you	get	familiar	with	Couchbase
Server	containers.

Data	representation	and	containment	in	Couchbase	Server	versus	relational	databases:

Couchbase	Server Relational	databases

Buckets Databases

Buckets	or	Items	(with	type	designator	attribute) Tables

Items	(key-value	or	document) Rows

Index Index

Items

Items	consist	of	a	key	and	a	value.	A	key	is	a	unique	identifier	within	the	bucket.	Value	can	be	a	binary	or	a
JSON	document.	You	can	mix	binary	and	JSON	values	inside	a	bucket.

Keys:	Each	value	(binary	or	JSON)	is	identified	by	a	unique	key.	The	key	is	typically	a	surrogate	key
generated	using	a	counter	or	a	UUID	generator.	Keys	are	immutable.	Thus,	if	you	use	composite	or
compound	keys,	ensure	that	you	use	attributes	that	don't	change	over	time.
Values

Binary	values:	Binary	values	can	be	used	for	high	performance	access	to	compact	data	through
keys.	Encrypted	secrets,	IoT	instrument	measurements,	session	states,	or	other	non-human-
readable	data	are	typical	cases	for	binary	data.	Binary	data	may	not	necessarily	be	binary,	but	could
be	non-JSON	formatted	text	like	XML,	String,	etc.	However,	using	binary	values	limits	the
functionality	your	application	can	take	advantage	of,	ruling	out	indexing	and	querying	in	Couchbase
Server	as	binary	values	have	a	proprietary	representation.
JSON	values:	JSON	provides	rich	representation	for	entities.	Couchbase	Server	can	parse,	index
and	query	JSON	values.	JSON	provide	a	name	and	a	value	for	each	attribute.	You	can	find	the
JSON	definition	at	RFC	7159	or	at	ECMA	404.

The	JSON	document	attributes	can	represent	both	basic	types	such	as	number,	string,	Boolean,	and
complex	types	including	embedded	documents	and	arrays.	In	the	examples	below,	a1	and	a2	represent
attributes	that	have	a	numeric	and	string	value	respectively,	a3	represents	an	embedded	document,	and	a4
represents	an	array	of	embedded	documents.

{

Data	Modeling	Guide

17Couchbase	Professional	Services

https://tools.ietf.org/html/rfc7159
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf


			"a1":number,

			"a2":"string",

			"a3":{

						"b1":[	number,	number,	number	]

			},

			"a4":[

						{	"c1":"string",	"c2":number	},

						{	"c1":"string",	"c2":number	}

			]

}

JSON	Design	Choices
Couchbase	Server	neither	enforces	nor	validates	for	any	particular	document	structure.	Below	are	the	design
choices	that	impact	JSON	document	design.

Document	typing	and	versioning
Key	Prefixing
Document	Management	fields

Document	structure	choices
Field	name	choice,	length,	style,	consistency,	etc.
Use	of	root	attribute
Objects	vs.	Arrays
Array	element	complexity
Timestamp	format
Valued,	Missing,	Empty,	and	Null	attribute	values

Document	Key	Prefixing

The	document	ID	is	the	primary	identifier	of	a	document	in	the	database.	Multiple	data	sets	are	expected	to
share	a	common	bucket	in	Couchbase.	To	ensure	each	data	set	has	an	isolated	keyspace,	it	is	a	best
practice	to	include	a	type/class/use-case/sub-domain	prefix	in	all	document	keys.	As	an	example	of	a	User
Model,	you	might	have	a	property	called		"userId":	123	,	the	document	key	might	look	like
	user:123	,		user_123	,	or		user::123	.	Every	Document	ID	is	a	combination	of	two	or	more
parts/values,	that	should	be	delimited	by	a	character	such	as	a	colon	or	an	underscore.	Pick	a	delimiter,	and
be	consistent	throughout	your	enterprise.

Just	as	each	Document	ID	should	contain	a	prefix	of	the	type/model,	it	is	also	a	best	practice	to	include	that
same	value	in	the	body	of	the	document.	This	allows	for	efficient	filtering	by	document	type	at	query	time	or
filtered	XDCR	replications.	This	property	can	be	named	many	different	names:		type	,		docType	,
	_type	,	and		_class		are	all	common	choices,	choose	one	that	fits	your	organization's	standards.

{

		"_type":	"user",

		"userId":	123

Data	Modeling	Guide

18Couchbase	Professional	Services



Document	Management	Fields

At	a	minimum,	every	JSON	document	should	contain	a	type	and	version	property.	Depending	on	your
application	requirements,	use	case,	the	line	of	business,	etc.	other	common	properties	to	consider	at:

	_created		-	A	timestamp	of	when	the	document	was	created	in	epoch	time	(milliseconds	or	seconds
if	millisecond	precision	is	not	required)
	_createdBy		-	A	user	ID/name	of	the	person	or	application	that	created	the	document
	_modified		-	A	timestamp	of	when	the	document	was	last	modified	in	epoch	time	(milliseconds	or
seconds	if	millisecond	precision	is	not	required)
	_modifiedBy		-	A	user	ID/name	of	the	person	or	application	that	modified	the	document
	_accessed		-	A	timestamp	of	when	the	document	was	last	accessed	in	epoch	time	(milliseconds	or
seconds	if	millisecond	precision	is	not	required)
	_geo		-	A	2	character	ISO	code	of	a	country

The	use	of	a	leading		_		creates	a	standardized	approach	to	global	attributes	across	all	documents	within
the	enterprise.

{

		"_type":	"user",

		"_schema":	"1.2",

		"_created":	1544734688923

		"userId":	123

}

The	same	can	be	applied	through	a	top-level	property	i.e.		"meta":	{}	.

{

		"meta":	{

				"type":	"user",

				"schema":	"1.2",

				"created":	1544734688923

		},

		"userId":	123

}

Choose	an	approach	that	works	within	your	organization	and	be	consistent	throughout	your	applications.

Note:	There	is	not	a	right	or	wrong	property	name,	however,	if	you're	application	will	leverage
Couchbase	Mobile	(in	particular	Sync-Gateway),	the	use	of	a	leading	underscore	should	be	avoided,	as
any	document	that	contains	root	level	properties	with	a	leading	underscore	will	fail	to	replicate.	This	is
not	a	bug,	and	it	meant	to	facilitate	backward	compatibility	with	v1.0	of	the	replication	protocol.

Field	name	length,	style,	consistency

Brevity	is	beautiful	at	scale	(e.g.,	11	vs	6	characters	*	1B	documents)		geoCode	vs	countryCode	

Data	Modeling	Guide

19Couchbase	Professional	Services



Self-documenting	names	reduce	doc	effort/maintenance		userName	vs	usyslogintxt	
Consistent	patterns	reduce	bugs	(pick	and	stick	to	a	standard)		firstName	or	first_name	or
firstname	,	but	pick	one.
Use	plural	names	for	array	fields,	and	singular	for	others		"phones":	[	...	],	"address":	{
...	},	"genre":	"	...	",	"scale":	2.3	.
Avoid	words	that	are	reserved	in	N1QL	(else,	escape	in	N1QL)		user,	bucket,	cluster,	role,
select,	insert		etc.,	Please	refer	N1QL	Reserved	Word	for	more	details	on	how	to	escape
reserved	words	in	N1QL.
Use	letters,	numbers,	or	underscore	(else,	escape	in	N1QL)		first_name	vs	first-name	.

Root	Attributes	vs.	Embedded	Attributes

The	query	model	changes	based	on	the	choice	of	having	a	single	root	attribute	or	the		type		attribute
embedded.	Lets	take	a	look	at	the		track		document	as	an	example.

Root	Attributes

Root	attribute	is	a	single,	top-level	attribute	with	all	other	attributes	encapsulated	as	an	object	value	of	the
root	attribute.	In	the	below	example,	the	root	element	of	the	JSON	document	is		track	.

{

		"track":	{

				"artist":	"Paul	Lekakis",

				"created":	"2015-08-18T19:57:07",

				"genre":	"Hi-NRG",

				"id":	"3305311F4A0FAAFEABD001D324906748B18FB24A",

				"mp3":	"https://goo.gl/KgKoR7",

				"ver":	"1.0",

				"ratings":	[

						{

								"created":	"2015-08-20T12:24:44",

								"rating":	4,

								"username":	"sublimatingraga37014"

						},

						{

								"created":	"2015-08-21T09:23:57",

								"rating":	4,

								"username":	"untillableshowings34122"

						}

				],

				"title":	"My	House",

				"modified":	"2015-08-18T19:57:07"

		}

}

Embedded	Attributes

Data	Modeling	Guide

20Couchbase	Professional	Services

https://docs.couchbase.com/server/current/n1ql/n1ql-language-reference/reservedwords.html


In	this	example,	the	JSON	document	is	in	a	flat	structure	but	there	is	an	attribute	called		type		embedded
within	the	document.

{

		"artist":	"Paul	Lekakis",

		"created":	"2015-08-18T19:57:07",

		"genre":	"Hi-NRG",

		"id":	"3305311F4A0FAAFEABD001D324906748B18FB24A",

		"mp3":	"https://goo.gl/KgKoR7",

		"ver":	"1.0",

		"ratings":	[

				{

						"created":	"2015-08-20T12:24:44",

						"rating":	4,

						"username":	"sublimatingraga37014"

				},

				{

						"created":	"2015-08-21T09:23:57",

						"rating":	4,

						"username":	"untillableshowings34122"

				}

		],

		"title":	"My	House",

		"modified":	"2015-08-18T19:57:07",

		"_type":	"track"

}

This	is	the	recommended	approach	since	we	can	use	the		type		field	to	create	index.

CREATE	INDEX	cb2_type	ON	couchmusic2(_type);

SELECT	COUNT(*)	AS	count

FROM	couchmusic2

WHERE	_type	=	"track"

GROUP	BY	genre;

Objects	vs.	Object	Arrays

There	are	two	different	ways	to	represent	objects.

Objects	-	In	this	choice,		phones		is	an	object	in	the		userProfile		class.

{

		"type":	"userProfile",

		"created":	"2015-01-28T13:50:56",

Data	Modeling	Guide

21Couchbase	Professional	Services



		"dateOfBirth":	"1986-06-09",

		"email":	"andy.bowman@games.com",

		"firstName":	"Andy",

		"gender":	"male",

		"lastName":	"Bowman",

		"phones":	{

				"number":	"212-771-1834",

				"type":	"cell"

		},

		"pwd":	"636f6c6f7261646f",

		"status":	"active",

		"title":	"Mr",

		"updated":	"2015-08-25T10:29:16",

		"username":	"copilotmarks61569"

}

Object	Arrays	-	In	this	choice,		phones		is	an	array	of	objects	in	the		userProfile		class.

{

		"type":	"userProfile",

		"created":	"2015-01-28T13:50:56",

		"dateOfBirth":	"1986-06-09",

		"email":	"andy.bowman@games.com",

		"firstName":	"Andy",

		"gender":	"male",

		"lastName":	"Bowman",

		"phones":	[

				{

						"number":	"212-771-1834",

						"type":	"cell"

				}

		],

		"pwd":	"636f6c6f7261646f",

		"status":	"active",

		"title":	"Mr",

		"updated":	"2015-08-25T10:29:16",

		"username":	"copilotmarks61569"

}

Array	element	complexity	and	use

Array	values	may	be	simple	or	object.

Store	key	to	lookup/join
In	this	choice,	tracks	is	an	array	of	strings	which	contain	track	ID's.	Let's	say	we	have	to	get	the
track	and	artist	name	for	each	of	the	track	id,	in	which	case	we	will	end	up	doing	multiple	gets.	So,

Data	Modeling	Guide

22Couchbase	Professional	Services



this	choice	will	have	a	significant	impact	when	the	user	base	is	high,	say	we	have	1M	users
accessing	this	information	which	translates	to	3M	gets	for	this	playlist.

{

		"created":	"2014-12-04T03:36:18",

		"id":	"003c6f65-641a-4c9a-8e5e-41c947086cae",

		"name":	"Eclectic	Summer	Mix",

		"owner":	"copilotmarks61569",

		"type":	"playlist",

		"tracks":	[

				"9FFAF88C1C3550245A19CE3BD91D3DC0BE616778",

				"3305311F4A0FAAFEABD001D324906748B18FB24A",

				"0EB4939F29669774A19B276E60F0E7B47E7EAF58"

		],

		"updated":	"2015-09-11T10:39:40"

}

Or,	nest	a	summary	to	avoid	a	lookup/join
There	are	lot	of	advantages	in	this	approach	over	the	first	one.	In	this	choice,	all	we	have	to	do	is
one	get	to	retrieve	all	the	information	that	we	need	regarding	the	playlist.

{

		"created":	"2014-12-04T03:36:18",

		"id":	"003c6f65-641a-4c9a-8e5e-41c947086cae",

		"name":	"Eclectic	Summer	Mix",

		"owner":	"copilotmarks61569",

		"type":	"playlist",

		"tracks":	[

				{

						"id":	"9FFAF88C1C3550245A19CE3BD91D3DC0BE616778",

						"title":	"Buddha	Nature",

						"artist":	"Deuter",

						"genre":	"Experimental	Electronic"

				},

				{

						"id":	"3305311F4A0FAAFEABD001D324906748B18FB24A",

						"title":	"Bluebird	Canyon	Stomp",

						"artist":	"Beaver	&	Krause",

						"genre":	"Experimental	Electronic"

				}

		],

		"updated":	"2015-09-11T10:39:40"

}

Timestamp	Format

Data	Modeling	Guide

23Couchbase	Professional	Services



Working	with	Timestamp	format	is	the	difficult	thing	when	it	comes	to	JSON,	since	JSON	does	not	have	a
standardized	date	format.	Dates	are	commonly	stored	as	string	in	JSON.

The	following	are	examples	of	commonly	used	date	formats.

ISO8601

{

		"countryCode":	"US",

		"type":	"country",

		"gdp":	53548,

		"name":	"United	States	of	America",

		"region":	"Americas",

		"region-number":	21,

		"sub-region":	"Northern	America",

		"updated":	"2010-07-15T15:34:27"

}

Time	Component	Array	-	This	format	can	be	extremely	useful	when	you	trying	to	group	data.	Lets	say,
you	want	to	generate	time	series	graph	and	this	choice	best	suits	when	you	want	to	visualize	data.

{

		"countryCode":	"US",

		"type":	"country",

		"gdp":	53548,

		"name":	"United	States	of	America",

		"region":	"Americas",

		"region-number":	21,

		"sub-region":	"Northern	America",

		"updated":	[	2010,	7,	15,	15,	34,	27	]

}

Epoch	/	Unix	-	Epoch	format	is	a	numeric	value	specifying	the	number	of	seconds	that	have	elapsed
since	00:00:00	Thursday,	1	January	1970.	Epoch	format	is	the	most	efficient	in	terms	of	brevity,
especially	if	you	reduce	the	granularity.	This	is	the	preferred	format	when	you	have	to	do	some	kind	of
date	comparison,	sorting	etc.

{

		"countryCode":	"US",

		"type":	"country",

		"gdp":	53548,

		"name":	"United	States	of	America",

		"region":	"Americas",

		"region-number":	21,

		"sub-region":	"Northern	America",

		"updated":	1279208067000

Data	Modeling	Guide

24Couchbase	Professional	Services



}

Four	states	of	data	presence	in	JSON	docs

It	is	important	to	understand	that	JSON	supports	optional	properties.	If	a	property	has	a	null	value,	consider
dropping	it	from	the	JSON	unless	there's	a	good	reason	not	to.	N1QL	makes	it	easy	to	test	for	missing	or	null
property	values.	Be	sure	your	application	code	handles	the	case	where	a	property	value	is	missing.

Fields	may	have	a	value

SELECT	geocode	WHERE	geocode	IS	VALUED

{

		"geocode":	"USA"

}

Fields	may	have	no	value

SELECT	geocode	WHERE	geocode	IS	NOT	VALUED

{

		"geocode":	""

}

Fields	may	be	missing

SELECT	geocode	WHERE	geocode	IS	[NOT]	MISSING

{

}

Fields	may	be	explicitly	null

SELECT	geocode	WHERE	geocode	IS	[NOT]	NULL

{

		"geocode":	null

}

Data	Modeling	Guide

25Couchbase	Professional	Services



Key	Design
The	most	important	part	of	NoSQL	database	modeling	is	how	do	we	design	our	document	keys.	There	are
different	patterns	as	mentioned	below	when	it	comes	to	designing	a	key.

Prefixing
Predictable
Counter	ID
Unpredictable
Combinations

Prefixing

Multiple	data	sets	are	expected	to	share	a	common	bucket	in	Couchbase.	To	ensure	each	data	set	has	an
isolated	keyspace,	it	is	a	best	practice	to	include	a	type/class/use-case/sub-domain	prefix	in	all	document
keys.	As	an	example	of	a	User	Model,	you	might	have	a	property	called		"userId":	123	,	the	document
key	might	look	like		user:123	,		user_123	,	or		user::123	.	Every	Document	ID	is	a	combination	of
two	or	more	parts/values,	that	should	be	delimited	by	a	character	such	as	a	colon	or	an	underscore.	Pick	a
delimiter,	and	be	consistent	throughout	your	enterprise.

DocType:ID		userprofile:fredsmith79			playlist:003c6f65-641a-4c9a-8e5e-
41c947086cae	

AppName:DocType:ID		couchmusic:userprofile:fredsmith79	
DocType:ParentID:ChildID		playlist:fredsmith79:003c6f65-641a-4c9a-8e5e-
41c947086cae	

Predictable

Let's	say	we're	storing	a	user	profile.	Assuming	no	cookies,	what	are	we	guaranteed	to	know	about	our	user
after	they've	logged	in?	Well,	one	thing	would	be	their	login	name.

So,	if	we	want	to	make	life	easy	for	ourselves	in	retrieving	our	user	profile,	then	we	can	key	it	with	that	user's
login	name.	Everything	else	we	need	to	know	about	that	person	could	be	derived	from	their	user	profile,	in
one	way	or	another.

Pretty	quickly	we	might	encounter	a	problem:	for	a	user	to	change	their	login	name,	we	now	have	to	either
create	a	new	user	profile	under	a	new	key	or	create	a	look-up	document.	We	could	insist	that	our	users	can
never	change	their	login	names	but	it's	unreasonable	to	make	our	users	suffer	unnecessarily.

The	main	downside	of	a	predictable	key	is	that,	usually,	it'll	be	an	element	of	the	data	that	we're	storing.

Data	Modeling	Guide

26Couchbase	Professional	Services



Counter	ID

We	can	get	Couchbase	to	generate	the	key	for	us	using	a	counter.	if	you're	using	a	counter	ID	pattern,	every
insert	(not	update)	requires	2	mutations.	One	to	increment	the	counter	and	the	other	to	mutate	the	document.

Here's	how	it	works:

1.	 Someone	fills	out	the	new	user	account	form	and	clicks	"Submit".
2.	 We	increment	our	counter	document	and	it	returns	the	next	number	up	(e.g.	123).
3.	 We	create	a	new	user	profile	document	keyed	with	123.
4.	 We	then	create	look-up	documents	for	things	such	as	their	user	id,	enabling	us	to	do	a	simple	look-up	on

the	data	we	hold	at	login	time.

We	also	get	some	additional	benefits	from	this	pattern,	such	as	a	counter	providing	us	with	some	details	of
many	user	profiles	we've	created	during	the	application's	lifetime.

Unpredictable

This	pattern	uses	system	generated	unique	ID's	like	UUID.

Combinations

It's	when	we	combine	both	these	methods	that	we	can	start	to	do	really	interesting	things	with	key	names.

We've	looked	before	at	when	to	embed	data	in	one	large	document	and	when	it's	best	to	refer	to	other
documents.	When	we	choose	to	refer	to	data	held	in	separate	documents,	we	can	build	predictable	key
names	from	components	that	tell	us	something	about	what	the	document	holds.

Data	Modeling	Guide

27Couchbase	Professional	Services



Let's	look	at	our	user	profile	again.	The	main	document	is	stored	under	the	key	1001.	We're	working	on	an
ecommerce	site	so	we	also	want	to	know	all	of	the	orders	our	customer	has	made.	Simple:	we	store	the	list
of	orders	under	the	key		1001:orders	.

Similarly,	our	system	might	judge	what	sort	of	marketing	emails	to	send	to	customers	based	on	their	total
spend	with	the	site.	Rather	than	have	the	system	calculate	that	afresh	each	time,	we	instead	do	it	the	NoSQL
way:	we	calculate	it	once	and	then	store	it	for	later	retrieval	under	the	key		1001:orders:value	.

Standardized	Fields

docType

We	have	discussed	about		docType		in	the	earlier	section	above.	Please	refer	Document	Key	Prefixing
section	in	this	document	for	details	on	docType.

Delimiter

Every	Document	ID	can	be	a	combination	of	two	or	more	parts/values,	that	should	be	delimited	by	a
character	such	as	a	colon	or	an	underscore.	Pick	a	delimiter,	and	be	consistent	throughout	your	enterprise.

It	is	a	best	practice	to	only	use	a	single-byte	delimiter	since	this	can	make	a	significant	difference	based	on
the	volume	of	data.

Schema

Applications	are	typically	versioned	using	Semantic	Versioning,	i.e.	2.5.1.	Where:

2	is	the	major	version
5	is	the	minor	version
1	is	bugfix/maintenance	version

Versioning	the	application	informs	users	of	features,	functionality,	updates,	etc.	The	term	"schemaless",	is
often	associated	with	NoSQL,	while	this	is	technically	correct,	it	is	better	stated	as:

Note:	"There	is	no	schema	managed	by	the	database,	however,	there	is	still	a	schema,	and	it	is	an
"Application	Enforced	Schema."	The	application	is	now	responsible	for	enforcing	the	schema	as	well	as
maintaining	the	integrity	of	the	data	and	relationships".

As	schemas	change	and	evolve,	documenting	the	version	of	the	schema	provides	a	mechanism	of	notifying
applications	about	the	schema	version	of	the	document	that	they're	working	with.	This	also	enables	a
migration	path	for	updating	models	which	is	discussed	further	in	the	Schema	Versioning	section.

{

		"_type":	"user",

		"_schema":	"1.2",

		"userId":	123

Data	Modeling	Guide

28Couchbase	Professional	Services



}

Please	refer	to	Document	Management	Strategies	document	for	a	more	thorough	discussion	of	schema
versioning.

Namespacing

The	use	of	a	leading		_		creates	a	standardized	approach	to	global	attributes	across	all	documents	within
the	enterprise.

{

		"_type":	"user",

		"_schema":	"1.2",

		"_created":	1544734688923

		"userId":	123

}

The	same	can	be	applied	through	a	top-level	property	i.e.		"meta":	{}	.

{

		"meta":	{

				"type":	"user",

				"schema":	"1.2",

				"created":	1544734688923

		},

		"userId":	123

}

Choose	an	approach	that	works	within	your	organization	and	be	consistent	throughout	your	applications.

Optimizations
JSON	gives	us	a	flexible	schema,	that	allows	our	models	to	rapidly	adapt	to	change,	this	is	because	the
schema	is	explicitly	stored	alongside	each	value.	Whereas,	in	an	RDBMS	the	schema	is	defined	by	the	table
columns,	which	are	defined	once.	In	any	database,	every	byte	of	stored	data	adds	up,	historically	this	has
been	abstracted	from	developers	as	the	schema	and	the	database	are	managed	by	a	DBA.	With	an
application	enforced	schema,	the	model	size	is	now	controlled	by	the	application.	As	developers	we	tend	to
be	overly	verbose	when	describing	variables	throughout	our	applications,	this	practice	tends	to	carry	over	to
our	JSON	models.	While	it	is	generally	preferred	to	maintain	human-readable	field	names	for	developer
productivity,	there	are	often	well-understood	abbreviations	for	many	fields	that	will	not	reduce	document
readability.

As	a	general	approach,	consider	the	following	options	to	proactively	reduce	document	sizes:

Don't	store	the	document	ID	as	a	repeated	value	in	the	document.

Data	Modeling	Guide

29Couchbase	Professional	Services



Convert	ISO-8601	timestamps	to	epoch	time	in	milliseconds,	saving	at	least	11	bytes.	When	millisecond
precision	is	not	required,	convert	to	a	smaller	value	(i.e.	divide	by	1000	to	convert	to	seconds,	60	for
minutes,	60	for	hours,	24	for	days),	saving	at	least	4	bytes.
Store	dates	as	an	ISO	format		YYYY-MM-DD		instead	of		MMM	DD,	YYYY	.
When	using	GUID's	strip	all	dashes	saving	an	additional	4	bytes	per	GUID.
Use	shorter	property	names.
Don't	store	properties	whose	value	is		null		,	empty		String/Array/Object	,	or	a	known	default.
Don't	repeat	values	in	arrays	whose	value	is	not	unique,	use	a	top-level	property	on	the	document.

Storing	Dates

It	is	very	common	in	almost	any	application,	there	is	a	need	to	store	a	date.	This	could	be	when	the
document	was	created,	modified,	when	an	order	was	placed,	etc.	Generally,	this	date	is	stored	in	ISO-8601
format.

Take	the	date		2018-12-14T03:45:24.478Z		as	an	example,	this	is	very	readable,	but	is	it	the	most
efficient	way	to	store	the	date?	Storing	this	same	date	as	Unix	Epoch	Time	we	can	represent	this	same	date
as		1544759124478	.	ISO-8601	is	24	bytes,	where	epoch	format	is	13	bytes,	this	saves	11	bytes.	This
might	not	seem	like	a	lot,	but	consider	this	scenario:	500,000,000	documents	and	each	document	has	an
average	of	2	date	properties.	If	we	used	epoch	format,	we'd	save	11,000,000,000	bytes	or	11Gb	of	space.

Now,	take	this	a	step	further	and	ask	the	question,	"What	level	of	precision	does	the	application	require?".
Often	times	we	do	not	need	millisecond	precision,	we	can	divide	the	epoch	date	accordingly	for	seconds,
minutes,	hours,	etc.	This	applies	if	dates	are	being	stored	in	Epoch	format.

Epoch	Date Precision Reduction Output Length	/
Bytes

1544759124478 milliseconds 	n/a	 1544759124478 13

1544759124478 seconds 	/	1000	 1544759124 10

1544759124478 minutes 	/1000	/	60	 25745985 8

1544759124478 hours 	/1000	/	60	/	60	 429099 6

1544759124478 days
	/1000	/	60	/	60	/

24	
17879 5

Please	refer	Document	Management	Strategies	guide	for	a	more	in-depth	discussion	of	this	topic.

Resources
JSON	Data	Modeling	for	RDBMS	Users
Data	Modeling	for	Couchbase	with	erwin	DM	NoSQL
SQL	to	JSON	Data	Modeling	with	Hackolade
Moving	from	SQL	Server	to	Couchbase	-	Data	Modeling

Data	Modeling	Guide

30Couchbase	Professional	Services

https://www.iso.org/iso-8601-date-and-time-format.html
https://en.wikipedia.org/wiki/Unix_time
https://blog.couchbase.com/json-data-modeling-rdbms-users/
https://blog.couchbase.com/data-modeling-for-couchbase-with-erwin-dm-nosql/
https://blog.couchbase.com/sql-to-json-data-modeling-hackolade/
https://blog.couchbase.com/moving-from-sql-server-to-couchbase-part-1-data-modeling/


Data	Modeling	Guide

31Couchbase	Professional	Services


	Notice and Disclaimer
	Data Modeling Guide

